
On The Link Between Mobile App Quality

And User Reviews

by

Hammad Khalid

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

October 2014

Copyright c© Hammad Khalid, 2014

Abstract

Mobile app stores contain millions of apps which users can download and install

on their smart phones. Each app has a page in the mobile app store that includes

app’s description, a download link for the app, and a space for users to review the

app. Each review has a 1-5 star rating and a review-comment. Unlike desktop and

server side-software where direct user feedback about software quality was difficult to

acquire, app developers now have access to the user’s perspective of their apps via the

reviews. Since apps with high-rating reviews are downloaded statistically significantly

more than apps with low-rating reviews, the insights from studying these reviews are

very important. Thus in this thesis, we analyze hundreds of thousands of reviews of

Android and iOS apps to help developers understand the relationship between app

quality, and the feedback in reviews.

In this thesis, we find that low-rated reviews of apps contain 12 different complaint

types which have varying impact and frequencies. The most frequent complaints are

about functional errors, feature requests, and app crashes; complaints about privacy,

ethical and hidden cost issues receive the worst star ratings. For Android developers

struggling with device fragmentation, we find that different Android devices give

varying star ratings. However, we show that device info from reviews can also be

used to identify a subset of Android devices that should be prioritized for testing.

i

Finally, we show that warnings from FindBugs, a static analysis tool, are related to

lower average app ratings and the complaints that users leave in the reviews. This

thesis shows how studying the reviews of mobile apps can help developers prioritize

their testing efforts to address the concerns of their users.

ii

Co-Authorship

Earlier versions of chapters in this thesis were published as listed below:

1. What Do Mobile App Users Complain About? – Chapter 3

Hammad Khalid, Emad Shihab, Meiyappan Nagappan and Ahmed E. Hassan,

IEEE Software, 2014

My contributions: Drafting the research plan, gathering and analysing the

data, writing the manuscript

2. Prioritizing The Devices To Test Your App On: A Case Study Of Android

Game Apps – Chapter 4

Hammad Khalid, Meiyappan Nagappan, Emad Shihab and Ahmed E. Hassan,

In Proceedings of the 22nd ACM SIGSOFT International Symposium on the

Foundations of Software Engineering

My contributions: Drafting the research plan, gathering and analysing the

data, writing the manuscript

iii

Acknowledgments

I consider myself very fortunate to be surrounded by an incredibly supportive group

of role-models: Samina (mom), Kat, Laila and Sohail – I am very happy to have you

in my life.

Moreover, I would like to thank my supervisor Dr. Ahmed E. Hassan whose

support and incredible ability to see the bigger picture were indispensable for this

work. Thank you for taking a chance on me and supporting my work.

I am deeply indebted to Dr. Meiyappan Nagappan and Dr. Emad Shihab who

are the main collaborators for my research. Their ideas, mentorship, and foresight

has had an incredibly positive impact on this work. I am very grateful for their help.

In addition I would like to thank Shane McIntosh and Sai Bala. Their positivity,

insights and support were invaluable to me.

I feel very proud for being able to work at the School of Computing in Queen’s

University. I am very happy with the time that I spent here, the support that I

received, and the friends that I made.

iv

Contents

Abstract i

Co-Authorship iii

Acknowledgments iv

Contents v

List of Tables viii

List of Figures x

Chapter 1: Introduction 1
1.1 Thesis Statement . 2
1.2 Overview . 2
1.3 Contributions . 5
1.4 Organization of Thesis . 6

Chapter 2: Background and Related Work 7
2.1 Mobile ecosystem . 7

2.1.1 iOS . 8
2.1.2 Android . 9

2.2 Reviews of Mobile Apps . 10
2.2.1 Studies on reviews . 10
2.2.2 Manual Analysis of text data 11

2.3 App Quality . 12
2.3.1 Studies on the Quality of Mobile apps 12
2.3.2 Studies related to testing Android apps 13

2.4 Static Analysis . 14

Chapter 3: What Do Mobile App Users Complain About? 17
3.1 Study Design . 21

v

3.1.1 Selecting the Apps . 21
3.1.2 Collecting the Reviews . 22
3.1.3 Selecting the Reviews . 22
3.1.4 Tagging the Reviews . 23

3.2 Results . 26
3.3 Generalizing the Results . 31

3.3.1 Comparison with Android apps 31
3.4 Discussion . 34

3.4.1 Complaints related to app updates 34
3.4.2 Lessons for Practitioners . 36

3.5 Threats to Validity . 37
3.5.1 External Validity: . 37
3.5.2 Internal Validity: . 37

3.6 Conclusion . 37

Chapter 4: Prioritizing The Devices To Test Your App On: A Case
Study Of Android Game Apps 39

4.1 Study Design . 43
4.1.1 Data Selection . 43
4.1.2 Data Collection . 44
4.1.3 Preliminary Analysis . 45

4.2 Results . 46
4.3 Generalizing the Results . 60

4.3.1 Comparison with Paid Game Apps 60
4.3.2 Analysis of Apps in Other Categories 64

4.4 Lessons for Developers . 67
4.5 Threats to validity . 68

4.5.1 Construct Validity . 68
4.5.2 Internal Validity . 68
4.5.3 External Validity . 70
4.5.4 Conclusion Validity . 71

4.6 Conclusion . 71

Chapter 5: Examining the Relationship between FindBugs Warn-
ings and End User Ratings: A Case Study On 10,000
Android Apps 75

5.1 Background On FindBugs . 78
5.2 Study Design . 79

5.2.1 Data Selection . 79
5.2.2 Data Collection . 80

vi

5.2.3 De-compiling Android apps 81
5.2.4 Running FindBugs on Android apps 81
5.2.5 Removing warnings of common libraries 81

5.3 Results . 83
5.4 Threats to validity . 92

5.4.1 Construct Validity: . 92
5.4.2 Internal Validity: . 93
5.4.3 External Validity: . 93

5.5 Conclusion and Lessons . 94

Chapter 6: Summary and Conclusions 96
6.1 Summary . 97
6.2 Limitations and Future Work . 99
6.3 Conclusions . 100

Bibliography 102

vii

List of Tables

3.1 Statistics of the studied iOS apps . 20

3.2 Identified complaint types with a description and an example 25

3.3 The Most Frequent and Impactful Complaint Types (All results are at

95% confidence level) . 28

3.4 Android apps used in this study with the number of total and sampled

reviews . 31

3.5 Comparison of the most frequent complaints across different platforms

(stat. signif. codes: ‘***’=0.001 ‘**’=0.01 ‘*’=0.05) 33

3.6 Most negatively-perceived factors across platform (‘-’ = low confidence

items, stat. signif. codes: ‘***’=0.001 ‘**’=0.01 ‘*’=0.05) 34

4.1 The market share of the most popular Android devices for our studied

time period (October 2012 to January 2013) 55

4.2 An example of the table used to compare bad star ratings given by

devices . 57

4.3 Scott-Knott test results when comparing the mean percentage of bad

star ratings given from each device to free game apps, divided into

distinct groups that have a statistically significant difference in the mean 58

viii

4.4 Scott-Knott test results when comparing the mean percentage of low-

ratings given from each device to free game apps, divided into distinct

groups that have a statistically significant difference in the mean . . . 63

4.5 Reviews collected and number of devices for the other 4 categories of

free apps . 65

5.1 Categories of FindBugs warnings that have a statistically significantly

higher density of warnings in low rated apps compared to high rated

apps. 87

5.2 Keywords used to identify user complaints in review-comments associ-

ated with a particular warning category and the results of the analysis

in the discussion subsection. 90

ix

List of Figures

3.1 Overview of our manual process for tagging reviews 22

3.2 The most frequent complaints in user reviews 29

3.3 The most impactful complaints in user reviews 30

4.1 Overview of our process . 43

4.2 Percent of Android devices used to give X% (X ranges from 0 - 80) of

the reviews for free game apps . 48

4.3 Number of Android devices that account for 80% of the reviews (left

purple histogram), compared with the total devices that review the

app (right red histogram) . 49

4.4 Percent of reviews of each app accounted for, by selecting the 10 devices

with the most review share for all 99 free game apps taken together . 51

4.5 Number of devices and percent of review share missed if 10 devices

with the most reviews for all the remaining apps are chosen 52

4.6 Percent of Android devices which contribute X% (X ranges from 0 -

80) of the reviews for all paid game apps 62

4.7 Number of devices and percent of review share missed if 10 devices

with the most reviews for all the remaining paid game apps are chosen 73

x

4.8 Percent of Android devices used to give X% (X ranges from 0 - 80) of

the reviews of free apps in 5 categories 74

5.1 Overview of our process . 79

5.2 Rating distribution of the 10,000 Android apps 80

5.3 Number of apps that contain the 4039 shared class signatures (we ex-

amine all class signatures above the green line) 82

5.4 Comparing the star ratings of 2,500 high and low-rated apps 84

xi

1

Chapter 1

Introduction

Over the past few years, the mobile ecosystem has grown at an exceptional rate.

Android and iOS operating systems (OS) have been the biggest benefactors of this

growth and now dominate the smart phone market [1, 2]. Because of this growth,

applications (apps) in both OS affect the lives of millions of users; there are apps for

productivity, entertainment, home automation and fitness etc [3]. Since these apps

are so interlinked with the lives of users, the expectations of their quality is very high.

Google Play and iTunes App Store are the main marketplaces for Android and iOS

apps respectively, from where users can search and download apps on their mobile

device [4,5]. Both of marketplaces allow users to give a public review of an app. The

review includes a 1 to 5 star rating (1 being the worst, 5 being the best). These star

ratings are aggregated to calculate the overall average app star rating. Each review

also includes a review-comment which lets the user describe their star rating. When

apps don’t meet the expected quality, users give them low-rating reviews in their

marketplace. Previous research has shown that these reviews are one of the primary

indicators of app quality from users [6–8].

Unlike desktop and server-side applications which typically receive feedback from

1.1. THESIS STATEMENT 2

bug reports, and user studies, the mobile ecosystem also provides public feedback to

researchers. Researchers can take advantage of this data and study if and how these

reviews can help developers improve the quality of their apps, and better prioritize

their Quality Assurance (QA) resources.

1.1 Thesis Statement

The mobile ecosystem provides centralized and publicly available user feedback in the
form of reviews. There is a great emphasis on these reviews and high-rated apps receive
significantly more downloads than low-rated apps. Now that researchers have access to
these reviews, they can perform new large-scale studies to help developers improve the
quality of their apps, and better prioritize their QA efforts.

1.2 Overview

Below we give an overview of the three studies that we performed on the reviews of

iOS and Android apps.

1. What Do Mobile App Users Complain About? – Chapter 3

Reviews provide a rich data source that can be leveraged to understand user

reported issues. By qualitatively studying 6,390 low-rated reviews for 20 free

iOS apps, we uncover 12 types of user complaints. We find that functional errors,

feature requests and app crashes are the most frequent complaints. Complaints

about privacy and ethical issues, and hidden app costs have the most negative

impact on the overall star rating of an app. We also find that users attributed

their complaint to a recent update of the app in 11% of the reviews. Our study is

the first to provide developers insight into the user reported issues of iOS apps,

1.2. OVERVIEW 3

along with their frequency and impact, helping developers better prioritize their

limited QA resources.

2. Prioritizing The Devices To Test Your App On: A Case Study Of Android

Game Apps – Chapter 4

Star ratings from mobile app users directly impact the revenue of its develop-

ers [8]. At the same time, for popular platforms like Android, these apps must

run on hundreds on devices increasing the chance for device-specific problems.

Device-specific problems could impact the star rating assigned to an app, given

the varying capabilities of devices (e.g., hardware and software). To fix device-

specific problems developers must test their apps on a large number of Android

devices, which is costly and inefficient.

We mine the reviews of 99 free game apps and find that, apps receive reviews

from a large number of devices: between 38 to 132 unique devices. However,

most of the reviews (80%) originate from a small subset of devices (on aver-

age, 33%). These findings indicate that focusing on the devices with the most

reviews (in particular the ones with negative star ratings), developers can effec-

tively prioritize their limited QA efforts, since these devices have the greatest

impact on star ratings. Furthermore, we find that developers of new game apps

with no reviews can use the review data of similar game apps to select the

devices that they should focus on first. Finally, among the set of devices that

generate the most reviews for an app, we find that some devices tend to gen-

erate worse star ratings than others. We show that these findings also hold for

apps in four other categories of the Google Play market.

3. Examining the Relationship between FindBugs Warnings and End User Ratings:

1.2. OVERVIEW 4

A Case Study On 10,000 Android Apps – Chapter 5

Past research has examined the relationship between static analysis warnings

and quality metrics. However, there is no evidence linking the static analysis

warnings directly to the user perception of software, as this relationship is diffi-

cult to examine by research. In the app ecosystem, user perception is extremely

important to study as reviews of apps are highly correlated with downloads

and hence revenues. We use FindBugs, which is an automated static analy-

sis tool for Java code, to compare the results of running this tool on 10,000

free-to-download Android apps with the reviews of the apps.

We find that (1) a statistically greater density of static analysis warnings occur

in low-rated apps than high-rated apps; (2) specific categories of FindBugs

warnings such as the ‘Bad Practice’, ‘Performance’ and ‘Internationalization’

categories are found significantly more in low-rated apps. On examining the

relationship between these three categories of warnings and the complaints in

reviews, we find that apps with the highest densities of these warning categories,

receive significantly more corresponding complaints. These findings provide

evidence that certain categories of warnings from FindBugs are closely related

to user experience and hence have a strong impact on the star rating of an

app. Thus app developers can use static analysis tools such as FindBugs to

potentially identify the culprit bugs behind the issues that users complain about,

before they release the app.

1.3. CONTRIBUTIONS 5

1.3 Contributions

After in-depth analysis of the reviews of Android and iOS apps, we make the following

contributions:

1. We identify the frequency and impact of 12 different complaint types in the

reviews of iOS apps. We show that most of the frequent complaints are about

functional errors or feature requests. We also show the importance of good

business practices as privacy and ethical issues, and hidden cost issues have

high impact on star ratings. In addition we identify the importance of regression

testing in iOS apps. By studying complaints, we identify why users give low-

rated reviews to apps. We compare the frequency and impact of complaints

across apps in Android and iOS. This information can help developers better

understand the user perceptive, and can thus help them improve the quality of

their apps.

2. To aid Android developers struggling with Android fragmentation, we demon-

strate how reviews of Android apps can be used to identify a subset of Android

devices which should be prioritized for testing. We also show that some devices

tend to generate worse star ratings than others. Android developers can allo-

cate additional resources for such devices, or remove support for them if they

see fit. By studying reviews of Android apps, we identify the devices which

Android developers should prioritize while testing.

3. By comparing the warnings of FindBugs with the star ratings of apps, we show

that low-rated apps have a statistically significantly higher density of FindBugs

warnings. We also find that three categories of bugs occur significantly more in

1.4. ORGANIZATION OF THESIS 6

low-rated apps. We show how app developers can avoid low-rated reviews by

utilizing static analysis.

1.4 Organization of Thesis

The remainder of this thesis is organized as follows: Chapter 2 describes the back-

ground of relevant topics, and surveys the related work. Chapter 3 presents our case

study on the complaints found in the reviews of iOS apps. Chapter 4 presents our

case study on the reviews of Android apps to identify the devices which have the

most impact on the star ratings of apps. Chapter 5 presents our case study on the

relationship between static analysis warnings on 10,000 Android apps, with their cor-

responding reviews. Chapter 6 concludes this thesis, and describes its limitations and

future work.

7

Chapter 2

Background and Related Work

In this chapter, we describe the relevant background information for this thesis and

survey some of the related work. First, we describe the mobile ecosystems and its

recent growth. More specifically, we cover the relevant details of the Android and iOS

operating systems. Next, we describe the reviews aspect of the mobile ecosystem.

Then, we examine the research which has examined improving the quality of mobile

apps. Finally, we describe static analysis, and previous research which has performed

static analysis on mobile apps.

2.1 Mobile ecosystem

Over the past few years, the mobile ecosystem has grown at a very impressive rate [3,

9]. Currently this ecosystem includes many operating systems including iOS, Android,

Windows Phone and BlackBerry [4, 5, 10, 11]. These operating systems are generally

coupled with app marketplaces, which are the distribution platforms for apps built

for of these operating systems. For example, Apple hosts the iTunes App Store for

iOS apps, while Google hosts Google Play store through which Android apps are

distributed [4, 5]. The revenue from these apps is expected to grow to $74 billion by

2.1. MOBILE ECOSYSTEM 8

2017 [12]. Such lucrative opportunities in the mobile market has drawn the attention

of large developer communities, and has made the app market very competitive.

These app marketplaces allow anyone (i.e., independent developers to large cor-

porations) to upload and distribute their apps. Users of these platforms are allowed

to rate and review these apps. This process helps these marketplaces rank the apps

based on their star ratings. Apps with high-ratings are featured and gain more at-

tention from users, while apps with poor ratings are rarely seen by users. This makes

getting and maintaining high-ratings extremely important.

In this thesis, we seek to study the reviews of apps in the mobile ecosystem so

that developers can improve the quality of their apps. Next, we cover the relevant

info for the iOS and Android operating systems that are two main subjects of this

thesis.

2.1.1 iOS

iOS, alongside the first iPhone, was first introduced by Apple in 2007. The main goal

behind this product was to create a device that allows users to make phone calls,

listen to music, and browse the web with one touch-capable device. Today, seven

generations later, iOS has evolved and now powers both iPhone as well as the iPad

tablet.

While the operating system itself is not open source, iOS does allow independent

developers to make apps on their platforms. These apps are made using Objective

C, and the Cocoa Touch framework. These apps are hosted on the iTunes App Store

which alone contained more than 1,000,000 apps (as of August 2014) and remains

one of the most competitive app markets [3].

2.1. MOBILE ECOSYSTEM 9

2.1.2 Android

Android is an open source operating system which is based on the Linux kernel. Sim-

ilar to iOS, this operating system supports touch input, and offers support for many

other hardware such as accelerometers, gyroscopes and proximity sensors. Android

has many marketplaces which distribute Android apps, amongst them are Google

Play, Amazon Appstore for Android, and Samsung Apps [4,13,14]. Android apps are

generally developed using the Java programming language (although, other options

for programming languages are available).

Usage of Android devices has grown at a tremendous rate over the past few

years [9]. At the end of 2013, Android accounted for 79% of the smart phone market

in the world; iOS accounted for 15.5% [1]. In the United States, however, Android

accounts for 52% of the market while iOS accounts for 40% [2].

While the open source nature of Android has allowed it to surpass iOS in mar-

ket share, the same openness has lead to some challenges for developers working on

Android apps. For instance, since any manufacturer can make a device which runs

Android, there are hundreds of Android devices in the market. Each one of them

have different capabilities, different hardware capabilities, and different target audi-

ences. This is a challenge for developers because now they have to test their app

on numerous devices to avoid device-specific issues. This problem is referred to as

Android fragmentation.

A recent study by Han et al. manually labeled bugs reported for specific vendors

of Android devices [15]. They highlighted evidence for Android fragmentation by

showing that HTC and Motorola devices have their own vendor specific bugs. They

considered this as evidence for Android fragmentation. Ham et al. came up with

2.2. REVIEWS OF MOBILE APPS 10

their own compatibility test system to prevent Android fragmentation problems [16].

They focus on doing code analysis and API pre-testing to identify possible issues. In

this thesis, we study how the device information in Android apps reviews can help

Android developers deal with Android fragmentation.

The mobile ecosystem has grown at a very impressive rate over the past few years. This
interest in mobile apps, along with their usage, has made the app market very competitive
for developers. This competition is most intense for iOS and Android app developers. In
this thesis, we seek to help developers of apps in these platforms understand how they
can improve the perceived quality of their apps and compete in this market.

2.2 Reviews of Mobile Apps

One of the most interesting aspects of the mobile ecosystem is the emphasis on user

feedback. Most app marketplaces allow the users to give public reviews to an app.

Users can give a star rating to an app (all of which are aggregated and displayed at

a version and app level basis), and provide a review-comment which describes their

rating. If users have a bad experience with an app, they give it a low-rating.

Thus star ratings of apps in the app markets (e.g., Google Play, iTunes App Store)

give an insight into the user’s opinion of the app. Next, we survey studies which have

examined the relevance of these reviews.

2.2.1 Studies on reviews

Reviews have become an important source of information about the perception of

customers. There are a slew of studies that have explored star ratings of products

and services (e.g., [6–8]).

In fact, Mudambi et al. [6] showed that star ratings and reviews play a key role

2.2. REVIEWS OF MOBILE APPS 11

in the purchasing decision of products at the online retailer Amazon. Instead of

mining reviews (like [6]), Kim et al. [7] interviewed 30 users who bought apps. Kim

et al. found that word of mouth and star ratings were key determinants in the

user’s purchase decision of an app. Harman et al. [8] mined information from 30,000

BlackBerry apps. They found that there is no correlation between price and star

ratings, or between the price and downloads. However, they find that there is a

strong correlation between star rating and number of downloads. They associated

star ratings to specific features in apps (e.g., having GPS support increases the star

ratings of an app).

Vasa et al. [17] and Hoon et al. [18] analyzed reviews of mobile apps and found

that the depth of feedback, and the range of words is higher when the users give a

low-rating to an app – highlighting the usefulness of low-rating reviews.

Pagano and Maalej [19] carried out an exploratory study on reviews from iOS apps

to determine their potential for requirements engineering processes. They showed that

the helpfulness and topics within these reviews vary. There have also been studies on

automatically extracting feature requests from the reviews [20,21].

In Chapter 3 of this thesis, we manually examine the text data within these reviews

to identify complaints of users. Next, we discuss previous research that has extracted

topics from text data via manual analysis.

2.2.2 Manual Analysis of text data

Past research hash also performed manual analysis to highlight critical information for

developers. Thung et al. [22] manually categorized the bugs that occur in Machine-

learning systems. They also reported that some bug categories have higher severity

2.3. APP QUALITY 12

than others. Similarly, Tian et al. [23] performed manual analysis on the content

of Software Engineering microblogs to better understand what developers microblog

about. Their manual analysis, was able to categorize these microblogs into distinct

categories (e.g., jobs or links for tools).

Reviews are a rich yet rarely studied source of information about the user’s perception
of app quality. An in-depth understanding of such perception will assist developers in
building apps that better meet the needs of users, and help researchers identify research
problems for mobile app with the most impact. In this thesis, we examine reviews to
better understand the complaints of users, and the issues that impact developers.

2.3 App Quality

The growth in usage of mobile apps, and their relevance in different fields, has made

the quality of mobile apps a very important topic. Below we survey the research

which relates to the quality and testing of mobile apps.

2.3.1 Studies on the Quality of Mobile apps

Research related to mobile app development is in its early stages, but it is gaining a

great amount of interest [24]. However most prior work to date is focused on quality

from the perspective of developers, not users. For example Syer et al. [25] compare

the source code for mobile apps developed for the Android and BlackBerry platforms.

They find that BlackBerry apps tend to depend less on the platform compared to

Android apps. Ruiz et al. [26] compare the extent of reuse of code among different

categories of Android apps. They find that there is a tendency to have identical apps

serving different locales or areas (e.g., one weather app for each city).

Agarwal et al. [27] performed a study involving mobile app developers to better

2.3. APP QUALITY 13

diagnose unexpected app behaviour. Jha [28] looked at different testing strategies

to improve the quality of mobile apps, and cataloged possible concerns when during

testing. Kim et al. proposed a method of unit testing the performance issues of mobile

apps and suggested different strategies that could improve the code quality of mobile

apps [29].

Stevens et al. examined permission usage in 10,000 Android apps and found a

relationship between the popularity of a permission and the number of times it is

misused [30]. Khomh et al. examined the pre-release field testing data of large enter-

prise software for mobile apps and proposed two new metrics which they show to be

more effective at predicting post-release defects [31].

Linares et al. examined API usage of Android apps and found that fault and

change proneness within the APIs of Android may have an effect on the quality and

star ratings of apps [32]. They found that these changes in the Android APIs can

lead to issues which cause malfunctions and crashes in the apps that use them.

In this thesis, we want to help developers improve the quality of their apps by

better understanding user feedback. Next, we examine studies which have focused on

specific issues of Android apps.

2.3.2 Studies related to testing Android apps

Several recent studies have attempted to reduce the testing burden of Android devel-

opers. Hu et al. suggested methods for automated test generation and analysis for

Android apps [33]. The feed random touch events into an app, and logged the results

for analysis. They show that their tool can be used to discover pre-existing and new

bugs. Similarly, Machiry et al. presented a dynamic input generation system which

2.4. STATIC ANALYSIS 14

can be used by developers for black-box testing [34]. Anand et al. also presented

an approach which generates input events to execute different event sequences for an

Android app [35].

There has also been previous work which has aimed to automate testing in a

virtual environment. Amalfitano et al. presented a tool which automatically generates

tests for Android Apps based on their graphical user interface [36]. DroidMate is

another such tool which uses genetic algorithms to generate input sequences (i.e.,

user interaction, or simulated events) [37].

While testing in a virtual environment is useful for identifying general issues,

developers also test their apps on actual Android devices to identify device-specific

issues. Google also recommends that that developers test their apps on actual devices

before releasing to Google Play [38]. Because of this, major app developers go through

the expensive process of thoroughly testing their Android apps on many different

devices [39, 40]. Thus, chapter 4 of this thesis focuses on helping developers identify

the devices that have the most impact on their app’s star rating; developer can

prioritize their testing efforts by focusing on these devices.

Research on mobile app quality is in its infancy where most of the prior studies have
focused on technical issues related to the quality of mobile apps instead of focusing on
the complaints raised by users in the field.

2.4 Static Analysis

Chapter 5 of this thesis uses static analysis to examine the relationship between static

analysis warnings and reviews of the apps. In this section we survey the work most

related to FindBugs, and other static analysis tools applied on Android apps.

2.4. STATIC ANALYSIS 15

Static analysis via FindBugs: Hovemeyer et al. introduced FindBugs as a tool

that automatically detects a variety of bugs within Java programs [41]. Their goal was

to make a tool that is easily extendible and helps developers identify overlooked bugs

and misuses of Java’s features. Cole et al. performed a study to show the usefulness of

the results of FindBugs [42]. They showed that most of the warnings from FindBugs

were true errors and could often point out major problems within Java code.

Ayewah et al. conducted a study where they examined the evaluations of Google

engineers of FindBugs warnings across numerous code bases. They found that while

not all issues caused serious problems, most evaluations from engineers suggested

fixing the underlying issues of these warnings [43]. On the other hand, Vetro et

al. compared the FindBugs warnings on 301 student Java projects, with the change

information from defects and showed that not all reported warnings are real defects

with high precision [44].

Ayewah et al. evaluated the effectiveness of FindBugs on multiple projects and

software development within Google [45]. They manually evaluated warnings and

showed that while there were some warnings which did not lead to bugs, the overall

rate of false positives was fairly low.

Static analysis in Android apps: Guo et al. proposed a static analysis tool called

Relda that can help developers identify resource leaks in Android apps [46]. Their tool

analyzes the callbacks in Android framework to locate the resource leaks. Similarly,

Payet et al. extended a pre-existing static analysis tool called Julia and improved the

precision of detecting nullness in Android apps [47]. Their work also demonstrated

2.4. STATIC ANALYSIS 16

the usefulness and versatility of static analysis tools in Android apps.

Krishnan et al. proposed a process for identifying security issues using existing

tools [48]. In addition to unit testing and black box testing, they recommend static

analysis via FindBugs to check coding standards.

While previous studies have examined the relationship of FindBugs warnings and

code quality, Chapter 5 of this thesis compares Findbugs warnings with the user

perceived quality of mobile apps, in the form of user reviews.

Previous research has shown the usefulness of FindBugs and the importance of reviews in
the mobile ecosystem. We examine the relationship between the warnings of FindBugs
and reviews of apps. We study how FindBugs can help developers improve the user
perceived quality of their apps.

17

Chapter 3

What Do Mobile App Users Complain About?

Summary – Reviews provide a rich data source that can be leveraged to under-

stand user reported issues. By qualitatively studying 6,390 low-rated reviews for 20

free iOS apps, we uncover 12 types of user complaints. We find that functional er-

rors, feature requests and app crashes are the most frequent complaints. Complaints

about privacy and ethical issues, and hidden app costs have the most negative impact

on the overall star rating of an app. We also find that users attributed their com-

plaint to a recent update of the app in 11% of the reviews. Our study is the first to

provide developers insight into the user reported issues of iOS apps, along with their

frequency and impact, helping developers better prioritize their limited QA resources.

Mobile apps continue to grow in popularity at a rapid pace. The Apple iOS (mobile

operating system) App Store alone contained more than 1,000,000 apps and remains

one of the most competitive app markets [3]. This competition, and the growth of

apps as observed thus far in critical domains such as e-commerce, government and the

health care industry has made the quality of apps an increasingly important issue.

The majority of recent work on the quality of apps has focused on quality issues

18

from the perspective of developers (e.g., [49]). However, one of the first steps in

understanding the issues that impact the quality of apps is to determine the challenges

or issues that users face when using these apps.

iOS apps are distributed through the App Store which lets users review their

downloaded apps. In addition to assigning a star rating to iOS apps (all of which

are aggregated and displayed at a version and app level basis), users can provide a

review-comment to rationalize their star rating. This data source captures a unique

perspective about the perception of users regarding the apps. Such reviews, like

product-reviews in online web stores, are highly correlated with download counts (i.e.,

purchases) and are a key measure of the app’s success [6,8]. A good understanding of

these issues will help developers understand the concerns of users, avoid low-ratings,

and better prioritize their QA resources. Furthermore, such an understanding is

crucial in guiding the Software Engineering research community in tackling high-

impact research problems in the fastest growing field of software development today.

In order to better understand the complaints of iOS users, we examine the low-

rating (1 and 2-star) reviews associated with 20 free1 iOS apps. Through a manual

analysis of a statistically representative sample of 6,390 iOS reviews, we arrive at the

following findings:

• We identified 12 types of user complaints in iOS apps ranging from functional to

privacy and ethical issues. Users attributed these complaints to a recent update

of an app in 11% of the sampled reviews. This highlights the importance of

regression testing in iOS apps.

1free-to-download; while these apps are labeled ‘free’ in the App Store, some of them require a
fee for premium features.

19

• The most frequent complaints are about functional errors, feature requests and

app crashes. Examining these complaints can help developers identify existing

problems, and new features for their app.

• The most negatively-impacting complaints are related to privacy and ethical

issues, hidden costs and disliked features that are degrading the end-user expe-

rience. Understanding these complaints is important as some complaints can

be much more detrimental than others.

Based on our findings (i.e., frequency and impact of complaint types), developers can

better anticipate possible complaints, and prioritize their limited QA resources on the

complaints most important for them.

The rest of the chapter is organized as follows. Section 3.1 describes our study

approach. Section 3.2 presents the results of this chapter. Section 3.3 generalizes

the results of this chapter by applying our approach to Android apps. Section 3.4

discusses some of our findings from the previous section. Section 3.5, we describe

potential threats to the validity of this study. Section 3.6 concludes the chapter.

2
0

Table 3.1: Statistics of the studied iOS apps

App Name Category Rating Total Low Reviews Sampled Reviews

High-rated Adobe Photoshop Express Photo & Video 3.5 1,030 280
iOS apps CNN app News 3.5 1,748 315
(rating above 3.5) ESPN Score center Sports 3.5 2,630 335

EverNote Productivity 3.5 1,760 315
Facebook Social Networking 4 171,618 383
Four Square Social Networking 4 1,990 322
MetalStorm: Wingman Games 4.5 1,666 312
Mint.com Personal Finance Finance 4 1,975 322
Netflix Entertainment 3.5 13,403 373
Yelp Travel 3.5 2,239 328

Low-rated Epicurious Recipes & Shopping List Lifestyle 3 940 273
iOS apps FarmVille by Zynga Games 3 10,576 371
(rating below 3.5) Find My iPhone Utilities 3 846 264

Gmail Productivity 3 1,650 312
Hulu Plus Entertainment 2 4,122 351
Kindle Books 3 3,188 343
Last.fm Music 3 1,418 302
Weight Watchers Mobile Health & Fitness 3 1,437 303
Wikipedia Mobile Reference 3 1,538 308
Word Lens Travel 2.5 1,009 278

3.1. STUDY DESIGN 21

3.1 Study Design

Users tend to write reviews when they are either extremely satisfied or extremely

dissatisfied with a product [50]. The low-rating reviews have a greater impact on

the sales than high-rating reviews since buyers are more likely to react to low-ratings

and complaints [51]. Therefore, in order to understand why users give low-ratings

to iOS apps, we focus our study on 1 and 2-star reviews. We explore two sources

of information in these reviews: 1) the star ratings and 2) the free-form review-

comments associated with each review. We manually tag review-comments in order to

uncover common complaints across iOS apps. Such manual tagging is time consuming,

therefore we focus on a subset of apps (20) and tag a statistically representative sample

of their reviews (6,390 reviews across the 20 apps). Figure 3.1 illustrates the design

of this chapter. In the following subsections, we describe each step in detail.

3.1.1 Selecting the Apps

We pick the 20 most popular iOS apps, as defined by the iOS Market during June

2012 (see Table 3.1), which are free-to-download. We make sure that the selected apps

have at least 750 reviews so that a few users do not skew the tagged reviews that

we analyze. We also ensure that half of the selected apps have an overall high-rated

(3.5 stars or better) and that the other half of the apps have an overall low-rated

(below 3.5 stars), since we want to identify the complaints in both high and low-rated

apps. We end up with 20 apps that cover 15 of the 23 categories (e.g., Productivity,

Finance) in the iOS market, ensuring the breadth of the studied apps.

3.1. STUDY DESIGN 22

Tagging the
Reviews

No

Yes

Selecting the
Apps

High
Rated

App List
Collecting the

Reviews

Statistical
Sample

with 95%
Confidence

Level

All
Extracted
Reviews

Tagged
Reviews

Selecting
the Reviews

Low
Rated

App List

App
Market

New
complaint

Type
Identified

Figure 3.1: Overview of our manual process for tagging reviews

3.1.2 Collecting the Reviews

The main data source for our study are the reviews posted by iOS app users on iTunes.

However, iTunes does not provide a public API for automatically retrieving reviews.

Instead, we obtain the reviews from a web-service called Appcomments, which collects

reviews of all iOS apps [52]. We build a web crawler which visits each unique page

with a specific iOS review and parses the reviews to extract data such as the app

name, the review title, the review-comment and the numerical star rating assigned

by the user. We collected all the reviews for each of the 20 studied apps during the

first week of June 2012.

3.1.3 Selecting the Reviews

As we want to examine the complaints of iOS users, we focus on 1 and 2-star reviews

since they are more likely to have user complaints. The studied apps have over 250,000

1 and 2-star reviews. Since manually examining all of these reviews is extremely time-

consuming, we study a statistically representative sample for these reviews [53]. The

3.1. STUDY DESIGN 23

sample of reviews is randomly chosen to achieve a 95% confidence level and a 5%

confidence interval. This means that we are 95% confident that each of the results

is within a margin of error of ±5%. For example, ‘Adobe Photoshop Express’ has a

total of 1,030 1 and 2-star reviews. The statistically representative sample for 1,030

reviews, with a 95% confidence level and a 5% confidence interval, is 280 reviews.

Thus, we randomly select 280 reviews from the 1,030 1 and 2-star reviews for manual

examination.

In total, we manually examine 6,390 reviews. We perform our sampling on a per

app basis since different apps have varying number of reviews and we want to capture

the complaints across the different apps. The number of randomly sampled reviews

for each app ranges from 264 to 383 and is shown in the sixth column of Table 3.1.

3.1.4 Tagging the Reviews

Once we determine the number of reviews to examine, we follow an iterative process

called Coding as suggested by Seaman et al. to identify the different complaint

types [54, 55]. The coding is used to turn qualitative information into quantitative

data. The author of this thesis read each review to determine the type of complaint

mentioned in the review. We follow the procedure below for tagging the reviews:

3.1. STUDY DESIGN 24

Inputs = All reviews (each with a review-title and a review-comment), a list of complaint
types (which is initially empty)

For each review:
Manually examine all of the text in the review.

If review matches an existing complaint type:
Tag review with a complaint type(s).

Else:
Add a new complaint type to the list of complaint types.
Restart tagging with new list of complaint types.

Outputs = All reviews (tagged with appropriate complaint types), and a list of complaint
types

This process is iterative such that each time a new complaint type is identified,

we go through all the previously tagged reviews and see if they should be tagged

using the new complaint type as well. This iterative process also helps us minimize

the threat of human error while tagging the reviews. In total, we ended up having to

restart the tagging process 3 times after discovering new complaint types. In certain

cases, a user may provide no meaningful comment for their review (e.g., simply saying

the app is bad). In such cases, we tag these types of reviews as being ‘Not Specific’.

Some reviews may also contain multiple complaints; in these cases, we tag the review

with multiple complaint types. For example, if a network problem is mentioned in

a review that also contains a complaint about the app crashing, the review will be

tagged with the ‘Network Problem’ and ‘App Crashing’ complaint types.

3
.1

.
S
T

U
D

Y
D

E
S
IG

N
2
5

Table 3.2: Identified complaint types with a description and an example

Complaint Type Description Example Review

App Crashing The app is often crashing “Crashes immediately after starting.”
Compatibility App has problems on a specific device or a OS version “I can’t even see half of the app on my ipod touch...”
Feature Removal Complaint about a disliked feature that is degrading the experience ”This app would be great, but get rid of the notifications!!!”
Feature Request App needs additional feature(s) to get a better rating “No way to customize alerts. ”
Functional Error An app specific problem was mentioned “Not getting notifications unless u actually open the app..”
Hidden Cost Complaint about the hidden costs for full experience “Great if you weren’t forced to buy coins for REAL money...”
Interface Design Complaint about the design, controls or visuals “The design isn’t sleek and not very intuitive”
Network Problem The app has trouble with the network or is slow to respond “New version can never connect to server!”
Privacy and Ethical The app invades privacy or is unethical “Yet another app that thinks your contacts are fair game.”
Resource Heavy The app consumes too much battery or memory “Makes GPS stay on all the time. Kills my battery.”
Uninteresting Con-
tent

The specific content is unappealing “It looks great but actual gameplay is boring and weak.”

Unresponsive App The app is slow to respond to input, or laggy overall “Bring back the old version. Scrolling lags.”

Not specific A review-comment that’s not useful or doesn’t point out a problem “Honestly the worst app ever.”

3.2. RESULTS 26

3.2 Results

Once we are done looking through all of the reviews, we end up with 12 different

complaint types. Table 3.2 lists the different complaint types, provides a description

for each type and gives an example review. We calculate the frequency and impact

of each complaint type below.

RQ1) What are the most frequent complaints in low-rated reviews?

We calculate the frequency of the complaint types for each app. Once we have

this frequency, we normalize it for each complaint type (i.e., number of complaints of

a specific type divided by the total number of sampled reviews for an app), so that we

can compare results across different apps with a varying number of reviews. Due to

the high deviance of each complaint type between different apps, we use the median,

instead of the mean, to summarize the frequency of each complaint type across all

the studied apps.

Table 3.3 shows the rank and median percentage of the complaints in column

two and three respectively. We see the ‘Functional Error’ complaints in 26.68% of

the reviews, ‘Feature Request’ in 15.13%, and ‘App Crashing’ in 10.51%. Together,

these three complaint types account for more than 50% of all complaints. Figure 3.2

illustrates these results.

To better understand ‘Functional Error’, the most frequent complaint type, we

examine the most frequently-used terms in these reviews. Then, we read through

all the review-comments that use these most frequently-used terms. We find that

4.5% of functional errors are about location issues and 7.3% are about authentication

problems. Below is an example of a functional error review where a user reported an

authentication problem.

3.2. RESULTS 27

Don’t do the update!!! : when I try to login it just keeps refreshing the screen...

Examining ‘Feature Request’, the second most frequent complaint type, we find

that most requests are very app specific. However, we do find that 6.12% of all feature

requests by users are for better notification support in apps.

Overall, we find that ‘Network Problem’, ‘Interface Design’ and ‘Feature Removal’

complaints are also frequent. Another complaint that we identify is ‘Compatibility’

which is an important issue for iOS devices; this refers to a complaint where the

app does not work correctly on a specific device or a version of the OS. Surprisingly,

complaints about compatibility, resources and the responsiveness of an app are not

as frequent – we expected more of such complaints.

In addition to measuring the frequency, we also examine whether the complaint

types vary between high and low-rated apps. To do so, we compare the frequency of

each complaint type among the 10 high and the 10 low-rated apps. We carry out this

comparison using a two-tailed Mann-Whitney U-Test with α < 0.05. We find that

there is no statistically significant difference between high and low-rated apps.

Our findings highlight the importance of software maintenance activities for iOS

apps since many of the low-rating reviews can be avoided by an increased focus on

QA (e.g, ‘Functional Error’, ‘App Crashing’, ‘Network Problem’). In addition, our

findings show that low-rating reviews frequently contain information that can help

developers identify the features which their users want, or really hate (e.g, ‘Feature

Request’, ‘Feature removal’).

Functional Error, Feature Request and App Crashing are the most frequent complaints
and account for more than 50% of the reported complaints.

3.2. RESULTS 28

Table 3.3: The Most Frequent and Impactful Complaint Types (All results are at
95% confidence level)

Most frequent Most impactful

Complaint Type Rank Median (%) Rank 1:2 star

Functional Error 1 26.68 7 2.1
Feature Request 2 15.13 12 1.28
App Crashing 3 10.51 4 2.85
Network Problem 4 7.39 6 2.25
Interface Design 5 3.44 10 1.5
Feature Removal 6 2.73 3 4.23
Hidden Cost 7 1.54 2 5.63
Compatibility 8 1.39 5 2.44
Privacy and Ethical 9 1.19 1 8.56
Unresponsive App 10 0.73 11 1.4
Uninteresting Content 11 0.29 9 1.5
Resource Heavy 12 0.28 8 2

Not specific - 13.28 - 3.8

RQ2) Which of the complaint types have the most impact on reviews?

Having identified the most common complaint types by analyzing 1 and 2-star reviews,

we determine which of these complaints are the most negatively-perceived by users.

We determine the most negatively-perceived complaints by looking at the ratio of 1

to 2-star ratings for each complaint type (across all apps). For example, a 1 to 2-star

ratio of 5 for a complaint type indicates that this complaint type has 5 times as many

1-star ratings as 2-star ratings.

Columns 4 and 5 of Table 3.3 show the rank and the 1:2 star ratio for each

complaint type. The most negatively-perceived complaints are different from the most

frequent complaints. Observing Table 3.3, we see that ‘Privacy and Ethical’, ‘Hidden

Cost’ and ‘Feature Removal’ are the top three most negatively-perceived complaints

– meaning that users are most bothered by issues related to the invasion of their

privacy and unethical actions of the app developer (e.g., unethical business practices

or selling the user’s personal data). Developers should only access the data (e.g.,

contacts of the user, or a user’s location) that they specified in the app’s description.

3.2. RESULTS 29

Figure 3.2: The most frequent complaints in user reviews

Figure 3.3 illustrates these results.

‘Hidden Cost’ is the second most negatively-perceived complaint that indicates

the dissatisfaction of users with the hidden costs needed for the full experience of

an app. This complaint showed up in 15 out of the 20 studied apps. While the

apps we studied are called free apps, the term ‘free’ only refers to downloading the

apps for free – and not necessarily using them for free. We find that when an app is

free to download but not free to use, users are disappointed and often end up giving

low-rating reviews. This suggests that the trust between the developers and users

is extremely important. For example, the ‘Hulu Plus’ app is free to download, but

has a monthly subscription cost and ads in streaming videos. Because of the need

for a monthly subscription, over 55% of the low-rating reviews for Hulu were about

3.2. RESULTS 30

Figure 3.3: The most impactful complaints in user reviews

the hidden costs. On closer examination, we find that the problem is that of a poor

description of the app by the developer and/or a misunderstanding by the user.

Developers should devote extra attention to the ‘App Crashing’, ‘Hidden Cost’

and ‘Feature Removal’ complaints as they occur frequently and they are negatively-

perceived by iOS users (see Table 3.3).

Privacy and Ethical, Hidden Cost and Feature Removal complaints are the most impactful
complaints and are mostly found in 1-star reviews. For developers, this finding stresses
the importance of establishing trust and expectations with the app users.

3.3. GENERALIZING THE RESULTS 31

Table 3.4: Android apps used in this study with the number of total and sampled
reviews

App Name Category Rating Total Low Sampled Reviews
Reviews

High-rated Adobe Photoshop Express Photo & Video 4.0 960 275
Android apps Facebook Social Networking 3.6 948 274

Low-rated Hulu Plus Entertainment 3.1 782 258
Android apps Weight Watchers Mobile Health & Fitness 2.7 790 259

3.3 Generalizing the Results

All of our analysis thus far used reviews for iOS apps. We want to see whether

we reach similar findings for the apps which are developed for multiple platforms.

In particular, we would like to examine whether the rankings and the negatively-

perceived complaints are different on the Android platform. Below we describe our

approach for collecting and analyzing reviews for Android apps.

3.3.1 Comparison with Android apps

Google Play is the main hub for Android app reviews. Due to the way that Google

Play publishes reviews (i.e., each review page loads with AJAX, requiring a browser

client), we were not able to use a simple web crawler which we used for the iOS apps.

Therefore, we extend our crawler to use Selenium, a web automation and testing

tool [56]. Selenium allows us to mimic a browser session and advance through each

page containing the Android app reviews. We parse and extract the same information

from each review as we did for the iOS apps.

To determine the effect of the platform on the ranking and the negatively-perceived

complaints, we re-do the analysis on four different apps that are developed for both,

iOS and Android. Two apps, i.e., ‘Adobe Photoshop Express’ and Facebook, represent

3.3. GENERALIZING THE RESULTS 32

the high-rated apps, whereas, ‘Hulu Plus’ and ‘Weight Watchers Mobile’, represent

the low-rated apps. Table 3.4 shows the Android apps that we picked along with the

total reviews collected and the sampled reviews. In total, we tag an additional 1,066

Android app reviews.

The most frequent complaint types are different for iOS and Android: Ta-

ble 3.5 presents the rank and median percentage of reviews for all complaint types.

We also show whether these rankings are statistically different. We find that An-

droid seems to have more ‘Resource Heavy’ complaints than iOS. Also, we find that

‘Resource Heavy’ is statistically different across the two platforms. In addition, we

notice that iOS apps have more ‘App Crashing’ and ‘Hidden Cost’ complaints than

Android.

Many negatively-perceived complaint types are different on iOS and An-

droid: Table 3.6 shows the ratio of 1 to 2 star ratings for each complaint type. We

ignore all complaint types with less than 10 reviews, since we cannot reach conclu-

sions with any confidence because of such a low number of reported reviews. The top

three complaints that are most negatively-perceived in Android are related to com-

patibility issues, hidden costs and functional errors, whereas, for iOS the top three

complaints are related to ‘Hidden Costs’, ‘Compatibility Issues’ and ‘Feature Re-

moval’. We find that ‘Functional Error’, ‘Hidden Cost’, ‘Network Problem’, ‘Feature

Removal’, ‘Privacy and Ethical’, ‘App Crashing’, and ‘Feature Request’ complaints

have a statistically significant difference across the two platforms.

Frequent complaints can have low negatively-perceived impact, while high

negatively-perceived complaints can be infrequent: It is interesting to note

3.3. GENERALIZING THE RESULTS 33

Table 3.5: Comparison of the most frequent complaints across different platforms
(stat. signif. codes: ‘***’=0.001 ‘**’=0.01 ‘*’=0.05)

4 Android Apps 4 iOS Apps

Complaint Type Rank Median Rank Median

Functional Error 1 32.05 1 30.63
Feature Request 2 15.63 3 16.39
Network Problem 3 13.35 4 9.98
Resource Heavy* 4 5.68 11 0.13
App Crashing 5 4.96 2 16.83
Interface Design 6 2.58 8 1.56
Unresponsive App 7 2.37 12 0.00
Compatibility 8 2.00 7 1.68
Feature Removal 9 1.85 6 1.93
Privacy and Ethical 10 0.75 9 0.31
Hidden Cost 11 0.58 5 5.66
Uninteresting Content 12 0.18 10 0.13

Not specific - 8.25 19.41

that ‘Functional Errors’ are ranked highly in terms of frequency and negatively-

perceived impact for Android, whereas in iOS, ‘Functional Errors’ are ranked highly

in frequency but lower in terms of negatively-perceived impact. Also, ‘Compati-

bility Issues’ have a high rank in terms of frequency and negatively-perceived im-

pact in Android, whereas in iOS, compatibility issues have a low-frequency but high

negatively-perceived impact. Such observations show that apps developed for dif-

ferent platforms have different issues and are perceived differently by these issues.

‘Feature Request’ while a frequent complaint on both platforms, does not have strong

negatively-perceived impact on either.

We find that Android versions of the apps have more ‘Resource Heavy’ complaints than
their iOS counterparts. ‘Compatibility’, ‘Functional Error’ and ‘Hidden Cost’ are the most
negatively-perceived complaints for Android, whereas, ‘Hidden Cost’, ‘Compatibility’ and
‘Feature Removal’ are the most negatively-perceived complaints for iOS.

3.4. DISCUSSION 34

Table 3.6: Most negatively-perceived factors across platform (‘-’ = low confidence
items, stat. signif. codes: ‘***’=0.001 ‘**’=0.01 ‘*’=0.05)

4 Android Apps 4 iOS Apps

Complaint Type Rank # Reviews 1:2 star Rank # Reviews 1:2 star

Compatibility 1 152 3.00 2 29 6.25
Functional Error*** 2 362 1.28 5 358 2.31
Hidden Cost*** 3 18 1.25 1 229 15.36
Unresponsive App 4 26 1.17 - 8 0.33
Network Problem*** 5 206 0.94 4 140 4.83
Resource Heavy 6 64 0.83 - 2 0.00
Interface Design 7 38 0.81 7 21 2.00
Feature Removal*** 8 32 0.78 3 67 5.70
Privacy and Ethical* - 7 0.75 - 6 0.00
App Crashing*** 9 102 0.62 6 222 2.17
Feature Request*** 10 236 0.61 8 214 1.30
Uninteresting Content - 2 0.00 - 5 1.50

Not Specific*** - 95 1.16 - 262 5.89

3.4 Discussion

While reading through the complaints, we notice that for many of the complaints,

users also report that they recently updated their app. Hence, we want to study

what appears to be a relationship between updates and complaints. This can help

developers prioritize regression testing for iOS apps. Then, we discuss the relevance

of different types of complaints to the various stakeholders of a software project (e.g.,

developer vs. project managers).

3.4.1 Complaints related to app updates

It is important to mention that we can only know if a complaint is post-update if the

user mentions it in the review; other complaints could be because of an update as

well.

We find that ∼11% of the sampled reviews mentioned that the recent update

3.4. DISCUSSION 35

impaired existing functionality. In 22% of these reviews, the users mentioned ‘Func-

tional Error’ complaints after updating their app. Most of these complaints are app

specific. For example, in the review below a user is facing a bug that affects the

function key of the ‘Adobe Photoshop Express’ app:

Useless now: Was very useful till last update... function keys no longer appear during

editing

We also find that 18.8% of reviews after a reported update include requests from

users for a new or a previously removed feature. We also found that 18.2% of post-

update reviews complained about the frequent crashing of the app.

Developers often release free apps in hopes of eventually monetizing them by

transforming free content/features to paid ones. We find that 6.8% of post-update

complaint reviews report complaints about this hidden cost. Another important com-

plaint that users report with recent updates is related to changes in the interface

design. We find that 6.2% of post-update complaint reviews report complaints about

the user interface.

Based on these findings, we recommend that developers pay special attention (e.g.,

via regression testing and user focus groups) to features that they might consider

removing, to adding additional fees, and to user interfaces changes that they might

plan to introduce in an update, since these seem to be some of the more common

complaints of iOS app updates. Thus, even if a user previously liked an app, a bad

update could be irritating enough to make them give the app a low-rating.

In ∼11% of the sampled reviews, users attributed their complaints to an app update –
highlighting the importance of regression testing in mobile development.

3.4. DISCUSSION 36

3.4.2 Lessons for Practitioners

Since users review apps as a whole, they often raise issues that are not directly

the responsibility of the developers; some complaints are directed towards product

managers or other team members. To identify these stakeholders, we divide these

complaints into three different categories: developer, strategic and content issues.

Developer issues are complaints that are directly related to developmental issues.

These issues include ‘Apps Crashing’, ‘Functional Error’, ‘Network Problem’, ‘Re-

source Heavy’, and ‘Unresponsive App’ complaints and accounted for 45.6% of all

complaints. Hence, many of the complaints are directly related to problems that

developers can address.

Strategic issues are complaints that primarily concern project managers, but could

partially target developers as well. These issues include ‘Feature Removal’, ‘Feature

Request’, ‘Interface Design’ and ‘Compatibility’ complaints and makeup 22.7% of

all complaints. Strategic issues require a greater knowledge about the project and

priorities, and usually do not have a straightforward solution.

Content issues encompass complaints about the content or value of the app itself

– developers have little or no control over these issues. These issues include ‘Privacy

and Ethical’, ‘Hidden Cost’ and ‘Uninteresting Content’ complaints. Addressing these

issues requires rethinking the core strategy of the app (i.e., business model or the

content offered). While these issues account for only 3.02% of all complaints, ‘Privacy

and Ethical’ (1:2 star ratio of 8.56) and ‘Hidden Cost’ (1:2 star ratio of 5.63) issues

are the most negatively-impactful complaints.

3.5. THREATS TO VALIDITY 37

3.5 Threats to Validity

3.5.1 External Validity:

Our study was performed on a sample of 20 iOS apps. Hence, our results about

complaints may not generalize to all iOS apps. To mitigate this threat we maximized

the coverage of complaints by studying apps which cover most of the categories in

the App Store.

3.5.2 Internal Validity:

The author of this thesis manually tagged the reviews. During this process, human

error or subjectivity may have lead to incorrect tagging. This threat was addressed

by random inspection of the reviews and the corresponding tags by the second and

third authors of this chapter.

3.6 Conclusion

Individual developers and organizations that develop iOS apps are strongly impacted

by reviews since low-ratings negatively reflect on the quality of their apps, and thus

affect the app’s popularity and eventually their revenues. To compete in an increas-

ingly competitive market, app developers must understand and address the concerns

of their users. In this study we identify 12 types of complaints and calculate the

frequency and impact of each complaint type. Our findings can help developers bet-

ter anticipate the complaints and prioritize their limited QA resources towards the

most frequent and/or impactful complaints. At the same time, our findings point to

new Software Engineering research avenues, such as the effect of ethics, privacy and

3.6. CONCLUSION 38

user-perceived quality on mobile apps.

39

Chapter 4

Prioritizing The Devices To Test Your App On: A

Case Study Of Android Game Apps

Summary – Star ratings from mobile app users directly impact the revenue of its

developers [8]. At the same time, for popular platforms like Android, these apps must

run on hundreds on devices increasing the chance for device-specific problems. Device-

specific problems could impact the star rating assigned to an app, given the varying

capabilities of devices (e.g., hardware and software). To fix device-specific problems

developers must test their apps on a large number of Android devices, which is costly

and inefficient. We mine the reviews of 99 free game apps and find that, apps receive

reviews from a large number of devices: between 38 to 132 unique devices. How-

ever, most of the reviews (80%) originate from a small subset of devices (on average,

33%). These findings indicate that focusing on the devices with the most reviews (in

particular the ones with negative star ratings), developers can effectively prioritize

their limited QA efforts, since these devices have the greatest impact on star ratings.

Furthermore, we find that developers of new game apps with no reviews can use the

review data of similar game apps to select the devices that they should focus on first.

40

Finally, among the set of devices that generate the most reviews for an app, we find

that some devices tend to generate worse star ratings than others. We show that these

findings also hold for apps in four other categories of the Google Play market.

Usage of Android devices has grown at a tremendous rate over the past few

years [9]. To capitalize on this growth, both small and large companies are develop-

ing an enormous amount of apps, designed to run on Android devices. However, the

top-rated or the featured apps in the app markets, are the apps with the most down-

loads, and hence the most revenue [8, 57]. Also the app market is very competitive,

especially for game app developers who have to compete with almost 120,000 game

apps already in the Google Play store – more than any other category of apps. To

compete in this environment, developers need to get (and maintain) good star ratings

for their apps [8]. This can be difficult since users are easily annoyed by buggy apps,

and that annoyance could lead to bad star ratings [58, 59]. Hence, app developers

need to test their apps thoroughly on different devices to avoid a poor rating.

To make matters worse, there exists a large number of Android devices, each with

its own nuances. In fact, dealing with device specific issues of (the many) Android

devices is considered one of the biggest challenges developers face when creating an

Android app [60]. A 2013 survey from Appcelerator, which has aggregated results

from similar such surveys in the past three years, shows that developer interest in

Android has fallen to 79% in 2013 from a high of 87% in 2011 [61]. A staggering 94%

of the developers that avoid working on Android apps cited Android fragmentation as

the main reason [62]. Android fragmentation refers to the concern, that since there are

many devices with different screen sizes, different OS versions, and other hardware

41

specifications, an app that functions correctly on one device might not work on a

different one [15]. Joorabchi et al. [60] examined the challenges in mobile application

development by interviewing 12 mobile developers. One of main the findings of their

study is that dealing with device specific issues (e.g., testing these devices) remains

a major challenge for mobile app developers. Even Google suggests that developers

should test their apps on actual devices before they release the app [38]. There are

now even business solutions based on providing devices remotely for testing [40].

However, with costs ranging in approximately a dollar for every 15 minutes of device

time [63], the total expense incurred to developers can get very high. These concerns

are especially worrisome for game app developers since they have to manually test

their apps on-device instead of just relying on automated tests; due to the graphical

and non-deterministic nature of video games [64].

Therefore, Android developers (and game developers in particular) need to care-

fully prioritize their testing and QA efforts on the most important devices. While

there has been some previous research in automated testing for Android apps [33,

34, 36, 37], to the best of our knowledge, there has not been any work on prioritizing

testing and QA efforts on the devices that have the most impact on the star rating

of an app.

We coin the term ‘review share’, which measures the percentage of reviews for an

app from a specific device. For example, a review share of 10% means that a specific

device gave 10% of all reviews for an app. We use ‘review share’ to demonstrate the

importance of focusing QA efforts on a smaller subset of devices. Through a study

of 89,239 reviews for 99 free game apps from various Android devices, we explore the

following research questions:

42

RQ1. What percentage of devices account for the majority of reviews?

We find that on average 33% of the devices account for 80% of all reviews given

to a free game app. With this information, app developers can prioritize their

testing and QA efforts by focusing on a small set of devices that have the highest

potential review share.

RQ2. How can new developers identify the devices that they should focus

their testing efforts on?

We find that developers can use the list of devices with the most review share

in all other gaming apps as a good indicator of which devices they should focus

their testing and QA efforts on.

RQ3. Do the star ratings from different Android devices vary significantly?

By examining the reviews from different devices for the same app, we find that

some devices give significantly worse star ratings. Developers can take corrective

actions for such devices or remove support for them if they see fit.

Takeaway: Developers can better prioritize their QA efforts by picking the devices

that have the most impact on the star ratings of apps. Some of these devices may

give worse star ratings than others – developers can either allocate additional QA

resources for these devices, or remove support for them.

The remainder of this chapter is organized as follows: Section 4.1 discusses in

detail the data that we analyze in this chapter. Section 4.2 presents the results of

this chapter. Section 4.3 performs further analysis on paid apps, and apps in other

categories, to see if our findings generalize. Section 4.4 discusses the lessons from our

4.1. STUDY DESIGN 43

Selecting
the top 99
game apps

Android
app

market

List of
top 99
apps

Collecting
the reviews
with a web

scraper

144,000+
extracted

reviews for
analysis

Data Selection Collected Data Data Collection

Figure 4.1: Overview of our process

findings for developers. Section 4.5 discusses the potential threats to the validity in

this chapter. Section 4.6 concludes the chapter.

4.1 Study Design

In this section we discuss the data used in this chapter, the main sources of this

data, and the collection process for this data. The main data used in this chapter are

the reviews of the top 99 Android game apps. We collect these reviews from Google

Play, which is the main market for Android apps. After collecting these reviews, we

identify the devices that these reviews were produced from, as well as, the star ratings

associated with each review. Figure 4.1 provides an overview of the process used in

this chapter. The following sections describe the data used in this chapter and our

data collection method in further detail.

4.1.1 Data Selection

We selected the top 99 free game apps as ranked by Google Play. Our proposed

method is general (i.e., other apps can be examined – See Section 4.3 for a discussion

about our analysis across the different categories of the market). Nevertheless, we

4.1. STUDY DESIGN 44

picked these top game apps for two reasons (a) since game apps are the most popular

apps in the Android market, and thus our results could have the greatest impact,

and (b) top game app developers like Red Robot Labs, Pocket Gems, Storm8, and

Animoca (More than 400 millions app download across their app portfolio), in an

article on TechCrunch discussed the issues they are having with testing their apps on

many devices [39]. Currently they rely on their experience (and app analytics data

when available) for choosing 30-50 devices to test on.

4.1.2 Data Collection

To collect the reviews, we build a web crawler using a web automation and testing

tool called Selenium [56]. Our crawler extracts data such as the app name, the review

title, the review description, the device used to review the app, and the numerical

star rating of the review. This crawler opens a new instance of the Firefox browser,

visits the URL of one of the selected apps, and then clicks through the review pages of

this app. The required information is located on each page using Xpath then stored

into a database [65]. We used a similar crawler to collect the URLs of the top apps.

This crawler is much more limited and slower than typical web-crawling since Google

Play puts heavy restrictions on crawlers. We found this crawling approach to be the

only reliable method for extracting the reviews. All of the crawling is done using an

anonymous user.

Also, Google Play limits the total number of reviews that a user can view to a

maximum of 480 for each of the star ratings (i.e., a user is restricted to viewing a

maximum of 2,400 reviews for each app as there are 5 levels of star ratings (5*480)).

Recent work by Pagano and Maalej shows that there exists a large amount of noise

4.1. STUDY DESIGN 45

in reviews, for example one word reviews [19]. Hence even Apps Markets have moved

to using more complex methods to calculate a global star rating or ranking of an app

instead of simply summing up all the reviews [66]. We use ‘the most helpful reviews’

as they are considered by App stores and users, as one of the most reliable sources of

user feedback. The helpfulness is determined by other users voting for reviews. Such

crowd-based filtering helps weed out spam reviews.

Summary of Collected Data In total we collect 144,689 reviews (across the 5 levels

of star rating) from the studied apps. From this set of reviews, we only consider the

ones that have a device associated with them. This reduces the set of reviews to

89,239, each submitted by a unique user. The implications of our review selection is

discussed in more detail in Section 4.5.2. We limit our reviews to those given only

after October 2012 to January 2013, a 3-month window since the rate of churn in

devices is very high.

4.1.3 Preliminary Analysis

Prior to delving into our research questions, we perform some preliminary analysis

on our dataset as a whole, i.e. using data from all 99 game apps taken together. We

perform this analysis to determine whether our review dataset contains reviews from

many different devices or a small set of devices. In other words, we would like to

determine if Android fragmentation does exist in our data or not. For this, we look

at how the reviews are distributed across the devices, for the apps taken as a whole.

Using all of the reviews, we identify the number of reviews that each device gave.

In total, our dataset contains 89,239 reviews from 187 unique Android devices.

4.2. RESULTS 46

Out of these 187 devices, 114 of these devices have provided more than 100 reviews.

These facts highlight the magnitude of the Android fragmentation problem and the

importance of identifying the devices that give the most reviews to apps, for priori-

tizing QA efforts.

4.2 Results

Now that we have determined that our dataset contains reviews from many different

Android devices, in this section we answer our research questions.

RQ1) What percentage of devices account for the majority of reviews?

Motivation: As mentioned earlier, Android fragmentation is a major concern of

developers who are seeking to develop high quality Android apps [16, 60, 62]. There

may be hundreds of devices that developers may need to test their apps on. Testing

on such a large number of devices is not feasible for developers with limited time and

budget. Therefore, our goal is to determine what percentage of devices account for

the majority of reviews.

Approach: To answer this question, we use the reviews that we collected for the 99

free game apps. For each review, we determine the device that the review was posted

from. Then we calculate the ‘review share’ for each device. We define ‘review share’

as the percentage of reviews from one device compared to the total number of reviews

from all devices. For example, a review share of 10% means that a device gave 10% of

all reviews. Initially we consider the reviews from all apps taken together. We then

determine what percentage of devices is required to cover X% of the reviews. In our

4.2. RESULTS 47

case, X varies from 0 to 80%.

We also examine the results by breaking down the reviews by star ratings. Instead

of looking at individual star ratings, we combine 1 and 2-star reviews into a group

which we call ‘bad reviews’, and combine 4 and 5-star reviews into another group

which we call ‘good reviews’. We label 3-star reviews as ‘medium reviews’. We then

calculate the review share for each device, when we exclusively consider only bad,

medium or good reviews.

To ensure that our grouping makes sense, we run a sentiment analysis tool over the

text of the reviews in these groups to validate that these groupings are appropriate

(i.e., ‘good reviews’ actually have the most positive reviews and vice versa) [67]. This

tool assigns an integer to the sentiment expressed in the reviews (where a negative

integer represents a negative review). In our case, the ‘negative reviews’ group was

assigned a score of -0.32, the ‘medium reviews’ group was assigned a score of 0.44,

while the ‘good reviews’ group was assigned a score of 1.25. These scores support our

grouping scheme.

Findings: Figure 4.2 shows the percentage of devices (x-axis) vs. the cumulative

percentage of reviews (y-axis) in the different star rating groups (different coloured

curves). From this figure, we find that 20% of the devices account for approximately

80% of the posted reviews. This finding suggests that developers working on free

game apps, only need to focus their testing efforts on 20% of the devices to cover the

majority (i.e., approximately 80%) of the reviews.

Observing Figure 4.2, we note that the bad, medium and good star ratings curves

are very similar. After comparing how different devices gave bad, medium and good

4.2. RESULTS 48

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●●

●●
● ●●

●●
●●

●●
●

0 5 10 15 20

0
20

40
60

80
10

0

Percent of devices

C
um

ul
at

iv
e

re
vi

ew
−

sh
ar

e

0 5 10 15 20

0
20

40
60

80
10

0

● All ratings
Bad ratings
Medium ratings
Good ratings

Figure 4.2: Percent of Android devices used to give X% (X ranges from 0 - 80) of the
reviews for free game apps

reviews, we find that while the devices that gave the bad star ratings were fairly

identical to the devices that gave good star ratings, there were a few discrepancies.

The set of devices that had a cumulative sum of 80% of the bad star ratings, had four

devices that were not in the set of devices that gave most of the good reviews. This

finding suggests that there is additional variation in how specific devices rate these

game apps.

Discussion: From RQ1, we know that a few devices account for most of the reviews

4.2. RESULTS 49

Number of devices

F
re

qu
en

cy

0 50 100 150

0
5

10
15

20

Devices needed for all of the reviews
Devices needed for 80% of the reviews

Figure 4.3: Number of Android devices that account for 80% of the reviews (left
purple histogram), compared with the total devices that review the app
(right red histogram)

in an app. We wanted to dig deeper and find if a similar trend exists at the app level

as well, i.e., for each app, if most of the reviews came from a small subset of devices.

The two histograms in Figure 4.3 compare the number of total unique devices

that rate an app, with the number of devices that account for 80% of the reviews

for an app. The right red histogram shows the number of unique devices that rate

each of the 99 game apps. The minimum number of devices is 38, the median is 87

devices, and while 132 is the maximum number of unique devices that rate an app.

This finding clearly indicates that fragmentation exists even at the app level.

The left purple histogram in Figure 4.3 show the number of devices that account

for 80% of the reviews. As this figure shows, this number is much lower than the total

number of unique devices. We find a minimum of 13, a median of 30, and a maximum

of 45 devices accounted for 80% of the reviews, per app. While these numbers may

seem large, one would have to keep in context that Android developers often have to

think about testing their apps on hundreds of devices, otherwise.

To get a better idea of the comparison above, we calculate the percentage of

4.2. RESULTS 50

devices that account for 80% of the reviews in each of the 99 free game apps. We do

this on a per app basis. We observe that, 80% of the reviews can be addressed by

considering a minimum of 22% of the devices, and at most 53% of the unique devices.

The average percentage of devices required to cover 80% of the review share is 33%

(and the median is 32%). This finding indicates that app developers can cover the

majority (i.e., 80%) of the reviews by focusing their QA efforts on 33% of the devices

on average.

A small set of devices are needed to cover 80% of the reviews. On average, 33% of all
devices account for 80% of reviews given to free game apps.

RQ2) How can new developers identify the devices that they should focus

their testing efforts on?

Motivation: Thus far, we have shown that a small percentage of devices make up

the majority of reviews. An implication of this finding is that, if developers carefully

pick their set of focus devices, then they can maximize the effectiveness of their QA

efforts. To illustrate, consider a scenario, where a team of developers is working on

a new free game app but they can only afford to buy 10 devices to test their app

on. Identifying the optimal set of devices is even more important for such developers

with limited resources who can only afford a few devices.

One method of picking these devices is to aggregate the review data of every

high-rated app in a category, and select the devices which would lead to the most

review share. This method can provide developers a working set of devices to start

from, which they can later augment with other devices. In this RQ we examine the

effectiveness of this method.

Using our review data, we generate Figure 4.4 which contains a stacked area chart

4.2. RESULTS 51

0

20

40

60

99 free game apps

P
er

ce
nt

ag
e

of
 r

ev
ie

w
s

Devices S.Galaxy.S3 S.Galaxy.S2 Nexus.7 S.Galaxy.S Motorola.Droid.RAZR S.Galaxy.Note S.Galaxy.Nexus LG.Optimus.One S.Galaxy.Ace S.Galaxy.Y

Figure 4.4: Percent of reviews of each app accounted for, by selecting the 10 devices
with the most review share for all 99 free game apps taken together

that shows the percentage of reviews that 10 devices with highest review share would

cover. This figure shows that even a small number of devices, if carefully chosen

(i.e., by looking at which devices frequently post reviews for apps), can account for a

considerable number of reviews – more than half of the reviews in most cases.

This leads to the question - how can developers without any reviews for their app

pick the best set of devices that they should focus their QA efforts on? For exam-

ple, can a developer use the review share data from all the high-rated apps that are

currently present in the game app category? Should they just pick the most popular

devices? We explore this issue in RQ2.

Approach: To answer this RQ (working with our dataset of 99 free game apps), we

identify a set of 10 devices with the most review share for each app, and compare this

set with the set of 10 devices with the most review share in the remaining 98 apps

combined. Doing so allows us to simulate an app developer who picks the 10 devices

that provide the most reviews for other apps, and using these devices to test his or

her own app. Since we have the reviews for that appas well in our dataset, we use

4.2. RESULTS 52

0

2

4

6

Top apps based on market share Top apps based on Review Share of other apps

N
um

be
r

of
 d

ev
ic

es
 m

is
se

d

(a) Number of devices missed

0

10

20

Top apps based on market share Top apps based on Review Share of other apps

P
er

ce
nt

 o
f r

ev
ie

w
s

m
is

se
d

(b) Percent of review share missed

Figure 4.5: Number of devices and percent of review share missed if 10 devices with
the most reviews for all the remaining apps are chosen

4.2. RESULTS 53

these reviews to measure the review share that would be covered for an app based on

the selected 10 devices. In other words, this analysis allows us to identify the devices

that were in the set of devices that gave the most reviews for an app, but not in the

set of devices that gave the most reviews for the rest of the group (essentially a set

difference). If such devices are identified, we sum the review share of these devices

to highlight the review share that the developer would have lost/missed if he or she

had picked the 10 devices with highest review share among all the other 98 apps in

that category. These results are shown in Figure 4.5.

Findings: Using our proposed method to prioritize the devices works well overall.

In the majority of the cases the developer will identify the 7 most review-producing

devices. Figure 4.5(a) (right box plot) shows the distribution of these missed devices

for the 99 free game apps. We observe that the median number of missed devices is

3 devices, with a max of 5 devices and a min of 0.

Now, we want to know what percentage of the review share would be impacted

due to these missed devices. Figure 4.5(b) (right box plot) contains a box plot that

shows the percentage of review share impacted due to the missed devices. The median

of missed review share is 7.1%. This is not a large loss in review share, especially

given that, using this method (i.e., using devices that have a large review share in the

app’s category), developers will have the benefit of picking an adequate set of devices

even before releasing their app to the market.

Discussion: While identifying the devices with the most review share within an

app’s category is useful, some developers may opt to pick the devices with the most

4.2. RESULTS 54

overall market share (which is posted on many mobile analytics websites, e.g., App

Brain [68]) to prioritize their QA effort. Market share is generally determined by the

number of active Android devices.

To compare this method of simply using market share to our proposed method,

which uses the reviews, we compare the devices with the most market share to the

devices that have the most review share for each of the game apps. We obtain the list

of devices with the most market share from App Brain, which gives us a list of the 10

devices (shown in Table 4.1) for our studied time period (October 2012 to January

2013).

Figure 4.5(a) (left box plot) shows the distribution of missed devices for each the

99 free game apps, when market share devices are compared with the 10 devices that

have the highest review share for the corresponding app. We find that the median

number of devices missed if we consider the market share devices is 4, which is higher

than if we use review share in the app’s category. Moreover, Figure 4.5(b) (left box

plot) shows the distribution of the percentage of review share impacted due to the

missed devices. Once again, we see that the median value is 9.8%. This rate is

higher than the median if our method was used (which has a median of 7.1%). The

difference in the number of missed devices and missed review share between choosing

our review-share method and the market-share method is statistically significant (p-

value < 0.01 for a paired Mann Whitney U test). Our findings suggest that simply

using the market share is not sufficient, and using our method, which uses reviews

from apps in the same category can identify devices that have a greater chance to

review the app. Thus by using our method, a developer can improve the effectiveness

of their device prioritization efforts, since they will be able to identify devices that

4.2. RESULTS 55

Table 4.1: The market share of the most popular Android devices for our studied
time period (October 2012 to January 2013)

Top market share device Market share
(%)

Samsung Galaxy S3 9.4
Samsung Galaxy S2 7.8
Samsung Galaxy S 2.6
Samsung Galaxy Ace 2
Samsung Galaxy Note 1.9
Samsung Galaxy Y 1.9
HTC Desire HD 1.5
Asus Nexus 7 1.1
Samsung Galaxy Tab 10.1 1.1
Motorola Droid RAZR 1.1

have a greater impact on the star ratings of an app.

While examining the 10 devices with the most review share in the game category,

we notice not all of the devices rate apps the same way. This makes us wonder if some

specific devices give worse star ratings than others, and thus need special attention

from developers. We explore this question next in RQ3.

Devices with the most review share across all existing high-rated game apps are a good
indicator of which devices are likely to have a large review share for each game app.
Using this list of devices, a developer can focus their QA efforts even before they release
the first version of their app.

RQ3) Do the star ratings from different Android devices vary signifi-

cantly?

Motivation: Since different devices have varying specifications, it could be the case

that users of the different Android devices perceive and rate the same app differently.

Understanding how different devices rate apps will allow developers to understand

why their apps were given the star ratings that they receive (i.e., is a device issue or

an app issue). If different devices give varying star ratings, this would imply that not

all reviews of apps should be treated the same way. With this kind of information,

4.2. RESULTS 56

the app developer can do one of two things: 1) they can either allocate even more

QA efforts (e.g., testing or focus group) to devices that give a poor rating, when the

revenue from that device is critical or 2) if there are not enough users of the app on

the particular device, then developers can manually exclude these devices [69], from

the list of supported devices on Google Play. In either case knowing if certain devices

give worse star ratings than others will help developers prioritize their QA efforts

even further.

Approach: We separately compare the bad (1 and 2-star reviews), medium (3-star

reviews) and good (4 and 5-star reviews) reviews from the 20 devices with the most

review share of the 99 free game apps. For example, to compare the star ratings of

the devices that gave low-ratings to game apps, we create a table where the columns

are the 99 game apps and the rows are a percentage of star ratings from the top 20

devices. Each cell in the table has a bad-ratings:all-ratings percentage (which is the

number of 1 and 2-star reviews over the total number of reviews) given to an app,

by a specific device. Table 4.2 is an example of such a table. For instance, the ratio

21:100 in the cell that corresponds to the row ‘Samsung Galaxy S3’ and the column

‘Angry Birds’, means that 21 out of every 100 star ratings that S3 devices gave to

Angry Birds game were bad (i.e., 1 and 2-star). Similarly, 33 out of every 100 star

ratings from the ‘Samsung Galaxy S2’ device for the ‘Temple Run’ game were bad.

To compare how the top review share devices give bad, medium and good star

ratings, we use the Scott-Knott test [70]. The Scott-Knott test is a statistical multi-

comparison procedure based on cluster analysis. The Scott-Knott test sorts the per-

centage of bad reviews for the different devices. Then, it groups the devices into two

4.2. RESULTS 57

Table 4.2: An example of the table used to compare bad star ratings given by devices

Device Angry Birds Temple Run

Samsung Galaxy S3 21:100 19:100
Samsung Galaxy S2 29:100 33:100

different groups that are separated based on their mean values (i.e., the mean value

of the percentage of bad reviews to all reviews for each device). If the two groups are

statistically significantly different, then the Scott-Knott test runs recursively to fur-

ther find new groups; otherwise, the devices are put in the same group. In the end of

this procedure, the Scott-Knott test comes up with groups of devices that are statis-

tically significantly different in terms of their percentage of bad reviews to all reviews.

Findings: The 20 devices (which we examine in this RQ) are divided into 4 statisti-

cally significantly different groups. Table 4.3 shows the significantly different groups

of devices as indicated by the Scott-Knott test. Table 4.3 also lists the devices that

are in the group and the mean percentage of bad reviews for each of the devices.

Our findings show that indeed, the users of some devices such as the ‘Motorola

Droid X2’ give more bad star ratings to apps than others. We find that this device has

a significantly higher ratio of bad star ratings than the devices that give the least ratio

of low-ratings to all star ratings (i.e., Samsung Galaxy Y). The Scott-Knott test also

shows that this device has the lowest ratio for high-ratings. A reason behind these

poor star ratings could be manufacturer specific problems. A recent study by Han et

al. provided evidence of vendor specific problems when they compared bug reports of

HTC devices with Motorola devices [15]. A report of this device from Android Police

(an Android dedicated web blog) describes its sluggish performance and poor screen

resolution [71]. The poor screen resolution may be the main issue with this device

4.2. RESULTS 58

Table 4.3: Scott-Knott test results when comparing the mean percentage of bad star
ratings given from each device to free game apps, divided into distinct
groups that have a statistically significant difference in the mean

Group Device Mean % of bad
star ratings for
the device per
app

G1 Motorola Droid X2 45.79

G2 Droid Bionic 39.25
Motorola Droid X 39.20
HTC Sensation 4G 39.10
HTC Evo 4G 39.03
HTC Desire HD 36.81
Samsung Galaxy
Nexus

35.72

HTC EVO 3D 35.53
HTC One S 35.31

G3 Motorola Droid
RAZR

33.51

Samsung Galaxy S 33.26
LG Optimus One 31.11
HTC One X 32.76

G4 Samsung Galaxy Ace 30.02
Samsung Galaxy
Note

29.68

Samsung Galaxy S3 28.19
LG Cayman 28.17
Samsung Galaxy S2 27.83
Asus Nexus 7 26.90
Samsung Galaxy Y 26.78

since most game apps require a good screen resolution and performance.

On the other hand, we notice that the users of some devices such as the ‘Samsung

Galaxy Y’, ‘Asus Nexus 7’ and ‘Samsung Galaxy S2’ give less bad star ratings than

other devices. To better understand the results, we further investigated the data to

see whether the bad reviews were given to the same app or whether the bad reviews

were given from different apps. We discover that the bad reviews are different for all

devices (i.e., it is not the same apps which are receiving the bad star ratings across

the different devices). For example, 92% of all star ratings given from the ‘HTC

Sensation 4G’ device to the ‘Tap Tap Revenge 4’ game app are bad star ratings while

4.2. RESULTS 59

the median percentage of bad star ratings given by the same device is 37.5%. We also

find that none of the other top devices gave this app such poor star ratings. Thus

we see that this particular app just does not work well on the ‘HTC Sensation 4G’

device. On further examination, we find many complaints by users of this device on

the forum of the developer of ‘Tap Tap Revenge 4’. Examining the reviews from this

device, we see that this app crashes after most major events (i.e., a song ending in

the app) [72].

Discussion: Our findings imply that developers should be aware that a few devices

may give significantly worse reviews than others. These bad star ratings may be given

because the device itself provides a poor user experience (i.e., ‘Motorola Droid X2’),

or that the app itself does not work well on a device (as in the case of ‘HTC Sensation

4G’ device and the ‘Tap Tap Revenge 4’ app). In either case, developers aware of

this finding can specifically address the concerns expressed in the reviews from such

devices (e.g., do detailed testing) or remove the support for such devices. We are

not suggesting that developers only need to test on devices that give statistically

different star ratings than others; developers just need to devote specific attention

towards problematic devices. Monitoring how different devices rate apps can reveal

devices that are bringing down the overall star rating of an app. Additionally, our

findings suggest that the user’s perception of the quality of an app depends on the

device on which it runs. Hence research on testing Android apps, should factor in the

effect of the device.

Another possible reason why some devices give worse star ratings than others

could be that those devices are simply older. Older devices also tend to have worse

4.3. GENERALIZING THE RESULTS 60

hardware specifications than new devices so the performance difference may be the

main reason for these bad star ratings. To test this theory, we identify the release

dates of the 20 devices with the most review share. Then we do a correlation test of

their release dates and the median of the percentage of bad star ratings to all star

ratings for the 20 devices. Using the ‘Spearman’ correlation test we find a correlation

of -0.61. Since the correlation is negative, it means that newer devices have a lower

percentage of bad star ratings. Therefore, this result implies that when it comes to

the top 20 devices, the age of the device may be a factor for bad star ratings. It is

important to note here that what we are observing is a correlation, not causation.

For the devices that give the most reviews for game apps, we find statistical evidence
suggesting that some of these devices give worse star ratings than others. Developers
can take corrective actions for such devices by allocating more QA effort, or removing
support for these devices if they see fit.

4.3 Generalizing the Results

We focus on free game apps since this lets us examine a very focused context, thus

avoiding other confounding factors such as cost, functionality, and end user profile.

We now wish to examine whether our findings generalize. First we compare our

results of free game apps with paid ones. Then, we compare our results for different

categories.

4.3.1 Comparison with Paid Game Apps

Although it is likely that many devices review the paid game apps as well, we believe

that there will be a more even distribution of reviews among the devices. The move

even distribution is because users of paid apps may be more inclined to give reviews,

4.3. GENERALIZING THE RESULTS 61

since they paid for the apps [19]. To conduct our comparison, we collected all the

reviews for the paid game apps. In total, we collected 61,996 reviews, of which 42,110

were associated with one of 159 devices.

Similar to RQ1, we identify the percentage of devices that are needed to account

for the majority of the reviews given to the paid game apps. We use the same meth-

ods that we used in RQ2, to determine an ideal method to choose the top 10 devices

for focussed QA efforts - based on the reviews from other apps, or based on market

share. We use the same method that we used in RQ3 to identify if star ratings from

different devices vary, for paid game apps.

What percentage of devices account for the majority of reviews? For paid

game apps, we find that the median number of unique devices that review each paid

game app is 50. Compared to free game apps, which have a median of 87 devices,

we find that paid game apps have much fewer unique devices that rate an app. In

terms of percentage of devices needed to account for 80% of the reviews on a per

app basis, we find that while the median is the same as free game apps, the range of

these percentages is more for paid game apps in comparison to free game apps. The

minimum percentage is 16.7% whereas the maximum percentage is 69.2%.

Figure 4.6 shows the percentage of devices vs. the cumulative percentage of re-

views in the different star rating groups for all the paid game apps taken together.

Again, compared to free game apps, we find that much less devices are needed to

account for 80% of the reviews. We find that only 12.6% of the devices are needed to

cover 80% of the reviews (compared to the 20% for the free game apps). Our finding

suggests that developers working on paid apps should be even more attentive of their

4.3. GENERALIZING THE RESULTS 62

●

●

●

●

●

●

●
●

●
●

●
●

●
●

● ●●
●●

●

0 5 10 15 20

0
20

40
60

80
10

0

Percent of devices

C
um

ul
at

iv
e

re
vi

ew
−

sh
ar

e

0 5 10 15 20

0
20

40
60

80
10

0

● All ratings
Bad ratings
Medium ratings
Good ratings

Figure 4.6: Percent of Android devices which contribute X% (X ranges from 0 - 80)
of the reviews for all paid game apps

analytics since in some cases a select few devices have a huge impact on their star

ratings, and hence their future revenue.

How can new developers identify the devices that they should focus their

testing efforts on? From Figure 4.7(a) and Figure 4.7(b), we can see that it is

indeed more beneficial to target devices based on the review share of the other paid

game apps instead of using the market share, since we will be targeting devices that

are used to review the apps more. The difference in both the cases is statistically

4.3. GENERALIZING THE RESULTS 63

Table 4.4: Scott-Knott test results when comparing the mean percentage of low-
ratings given from each device to free game apps, divided into distinct
groups that have a statistically significant difference in the mean

Group Device Mean % of low-
ratings for the
device per app

G1 EeePad Transformer
TF101

42.83

Motorola XOOM 41.20
HTC Evo 4G 40.32
Samsung Nexus S 39.16
Galaxy Tab 10.1 38.79
HTC Desire HD 36.55
Droid Bionic 36.26
EeePad Transformer
TF300

35.69

G2 Samsung Galaxy
Note

33.55

HTC Sensation 4G 33.25
HTC EVO 3D 32.33
Samsung Galaxy S 32.84
SEMC Xperia Play 31.53
HTC One S 31.29
Motorola Droid
RAZR

30.29

HTC One X 29.29
Samsung Galaxy S2 29.11
Samsung Galaxy
Nexus

29.04

G3 Samsung Galaxy S3 26.72
Asus Nexus 7 22.63

significant (p-value < 0.01 for Mann Whitney U test). This result is similar to the

result for the free game apps. However one noticeable difference is that the number of

devices missed (median of 5 devices) and the review share missed (median of 15.9%)

for paid apps when using the market share data is slightly higher than in the case of

free game apps (where the median values are 4 devices and 9.8%). Thus we can see

that in the case of paid game apps, the market share data is much less accurate in

helping the developer identify the devices to test their app on first.

Do the star ratings from different Android devices vary significantly? For

4.3. GENERALIZING THE RESULTS 64

the paid game apps, we illustrate the differences in the percentage of low-ratings from

each device in Table 4.4. Our findings show that indeed, even for paid game apps,

different devices provide different levels of low-ratings to apps. The Scott-Knott test

groups the devices into 3 statistically significantly different groups. For example,

the ‘Asus Nexus 7’ and the ‘Samsung Galaxy S3’ devices give significantly better

ratings to paid game apps than many of the other devices (i.e. Motorola Xoom,

EeePad TF101, HTC Evo 4G). We also find that the set of devices that give a higher

percentage of bad star ratings in paid apps is different from the set of devices that

give a higher percentage of bad star ratings in free game apps. For example, the

Motorola Xoom and EeePad TF101 are not even in the top 20 devices that review

free game apps. Thus developers need to be careful about using free games apps to

prioritize their QA efforts for paid game apps, as the devices that the users use for

paid game apps do vary. Next, we examine the devices that review apps in other

categories (not just games).

Trends and results in paid game apps are similar to free game apps as well. However, the
argument for prioritization is more pronounced in the case of paid game apps. Therefore
paid game app developers can make optimal use of their QA budget by prioritizing their
efforts based on the share of reviews from a device.

4.3.2 Analysis of Apps in Other Categories

While the findings of the study so far are most relevant for developers of game apps, we

want to see if our findings hold for apps in other categories as well. More specifically,

we want to examine if the reviews of apps in the Business, Education, Sports and

Entertainment categories have similar patterns to those we found in our study – this

can help other developers deal with Android fragmentation as well. Statistics about

4.3. GENERALIZING THE RESULTS 65

Table 4.5: Reviews collected and number of devices for the other 4 categories of free
apps

Category # of Reviews # Reviews Linked to a Device # of devices

Business 21,365 13,901 153
Education 14,097 9,000 168
Sports 16,790 12,102 157
Entertainment 64,690 40,399 180

the data used to perform this analysis is summarized in Table 4.5.

What percentage of devices account for the majority of reviews? Figure 4.8

shows the percentage of devices vs. the cumulative percentage of reviews in the dif-

ferent star rating groups for each of the 5 categories. We find that when considered

together, 21.1%, 22.2% and 22.6% of the devices account for 80% of the reviews given

to apps in the Entertainment, Business and Education categories respectively. For

apps in the Sports category, only 17.1% of the devices account for 80% of the reviews.

These numbers are similar to the 20% in the free game apps category. Similar to game

apps, these findings imply that developers working on these categories only need to

focus on a small subset of devices to cover the majority of the reviews given to their

apps. Our finding suggests that developers working on apps in categories other than

games can also greatly improve their efficiency by focusing on the few important de-

vices since these devices make up the majority of the reviews given to an app.

How can new developers identify the devices that they should focus their

testing efforts on? Similar to our results for free game apps, we find that developers

get more coverage of the reviews, if they focus on the devices with the most review

share instead of the devices with the most market share. We find that by focusing

4.3. GENERALIZING THE RESULTS 66

on the devices with the most review share, instead of the devices with the most mar-

ket share, developers can gain an extra 7.69%, 8.51%, 6.48%, 7.91% review coverage

on apps in the Business, Education, Entertainment and Sports categories respectively.

Do the star ratings from different Android devices vary significantly? We

now compare how different devices review free apps in Entertainment, Business,

Sports, Game and Education categories. Using the Scott-Knott test, we observe

that the variation of star ratings from different devices is also present for the apps

in these categories of apps. In each category, the Scott-Knott test divided the set of

devices into four statistically significantly different groups based on the percentage of

bad reviews to all reviews in an app. We note that many of the devices that give the

most star ratings to apps in these categories vary in terms of their low and high-rating.

We also note that the Asus Nexus 7 gave more low-ratings, and less high-ratings for

the apps in the Entertainment category than it did in the game category. The fact

that the Asus Nexus 7 gave more bad star ratings in the Entertainment category may

be because it is a tablet and not all apps scale well to larger screens, indicating that

some devices may rate apps in different categories with varying criteria. Our find-

ings further suggest that developers working on Android must be attentive of their

analytics as it could help them identify problematic devices.

After comparing the results of our RQs for the free game apps, with paid game

apps and apps in four other categories, we find evidence that our results do generalize.

Our finding suggests that developers working on apps in other categories can also use

our methods to better prioritize their QA efforts.

4.4. LESSONS FOR DEVELOPERS 67

When working on apps in the Entertainment, Business, Sports, and Education categories,
developers only need to focus their testing efforts on a small set of devices to cover the
majority of the reviews for their apps. Moreover, we find that many of the devices give
different star ratings to apps in these categories.

4.4 Lessons for Developers

While we think that the results from this study will be useful for developers, device

usage may have changed by the time most developers view this study. The change

is because of the rapid growth and evolution of the mobile industry where newer

devices are constantly being released [9]. Thus, developers should focus on our general

findings and method rather than the device specific results.

For example, developers can take away the idea of prioritizing their QA efforts

on a subset of impactful devices rather than all devices. Moreover, they can use our

method of analyzing reviews per device to potentially identify devices that consis-

tently give poor star ratings. Once developers identify these problematic devices,

they can remove support for them to avoid additional QA and their bad reviews all-

together. If developers feel that the additional downloads (which can generate high

ad revenue) from these devices are worth potentially lower average star ratings, they

can allocate additional QA resources for these devices.

While it is ultimately up to the developers to decide how they are going to priori-

tize their QA efforts, we think that focusing on the devices that have the most impact

on the app’s star ratings is an effective method (especially because star ratings are

directly correlated to the number of downloads [8], and thus the revenue generated

by apps).

4.5. THREATS TO VALIDITY 68

4.5 Threats to validity

In this section we discuss the perceived threats to our work and how we address them.

4.5.1 Construct Validity

We compared the bad, medium and good reviews given from different devices to

identify if certain devices give different (and worse) star ratings than other devices.

Note that we are not raising a causal link here in this thesis. We are not claiming

that an app gets a poor rating because of a device. We are just saying that apps get

rated frequently and sometimes poorly from a small set of devices. This is similar

to the vast literature on using software metrics for QA prioritization. Such literature

do not claim a causal link between software metrics and software defects, but just

suggest that software metrics like churn can be used to prioritize QA efforts. The

underlying reason for poorer or more frequent reviews from a particular device could

be the hardware specification of the devices, the OS running on the devices, or just

that the people using a particular device may have a specific profile. More research

has to be conducted to identify the underlying causes. Note that data on user profile

or which OS version is running on a device is currently not available openly to be

mined by researchers. Hence, a major data collection effort has to be launched to

examine these underlying factors.

4.5.2 Internal Validity

Since we limited our reviews to only the reviews from a few months (i.e., October,

1st, 2012 till January, 15, 2013), our data may not accurately represent star ratings

for the entire year or the entire life of devices. However, to mitigate this threat, we

4.5. THREATS TO VALIDITY 69

made sure to apply statistical tests, where applicable, to ensure that our findings

are statistically significant. Also note that we extract the device information from

reviews. This information, as far as we can tell is very accurate, and cannot be faked,

since a user cannot manually change this information when posting a review. The

device information is automatically taken from the device from which the review is

posted.

Since we require reviews to contain the device information, we had to ignore

reviews that were not linked to a device. To determine the impact of this issue on

our findings, we measured the average star rating from reviews that were linked to a

device and reviews that were not linked to a device. We found that for free game apps,

the average star rating for reviews that were linked to a device is 3.22, while it is 3.43

for reviews that were not linked to a device. For paid game apps, the average star

rating for reviews linked to a device is 3.53, while it is 3.52 for reviews that are not

linked to a device. If we consider all of the apps, not just game apps, we found that

the average star rating for reviews that are linked to a device is 3.37 and for reviews

that are not linked to a device is 3.51 (and we found similar results when we took each

category of apps separately). We performed the Wilcoxon statistical significance test

and found that there is a statistically significant difference for free game apps and all

apps, however, there is no statistically significant difference for paid game apps. In

all statistically significant cases, we find the star rating tend to be lower for reviews

that are linked to a device. This finding indicates that reviews that are linked to a

device are more critical, and hence, are more important to developers who are trying

to avoid negative reviews.

Reviews can contain some spam reviews that serve as noise in our dataset [19]. To

4.5. THREATS TO VALIDITY 70

mitigate this issue and ensure the quality of the reviews used in our study, we selected

the ‘most helpful reviews’, since they provide us with the most reliable information.

All of our findings are derived from reviews. In certain cases, reviews may not

directly correlate with other measures of quality such as defects, for example. How-

ever, prior research showed that reviews are directly correlated with revenues (even

for free apps, which make their money through ads). Therefore, we believe that using

reviews is a good proxy of success of an app.

4.5.3 External Validity

Since this study was performed on 99 mobile apps, our results may not generalize to

all game apps. To address this threat, we pick apps which are labeled as ‘Top apps’

by Google Play. We feel that these apps are an appropriate representation of the apps

in the game category, and a better choice than hand picking apps. In addition we

extended our study to paid game apps, and free apps from four other app categories

in Google Play. We found that, our results were often consistent, and sometimes even

more pronounced in these apps, when compared to our results for free game apps.

Given that the Android OS and app ecosystems are quickly evolving, the device

specific analysis in this thesis may not be applicable in a few years (or even months).

However, we would like to emphasize that the main takeaways from this study are

not about specific devices, but are about our generalizable method for prioritizing

QA efforts.

4.6. CONCLUSION 71

4.5.4 Conclusion Validity

We assume that testing apps or conducting focus groups for certain devices will

find problems (e.g., bugs) which can be fixed by the developer of an app, thereby

improving the quality and hence the revenues of the app. Even though it may seem

logical, it still is an assumption. For example, we did not verify whether the test

effort prioritization does actually improve quality or increase revenues. However, this

assumption (testing finds bugs that can be fixed to improve quality) is the basis for

most testing efforts. Nevertheless more in-depth studies are needed to study such

assumptions.

4.6 Conclusion

In this chapter we sought to help game app developers deal with Android fragmen-

tation by picking the devices that have the most impact on their app star ratings,

thus aiding developers in prioritizing their QA efforts. By studying the reviews of

game apps, we find that a small percentage of devices account for most of the reviews

given to apps. Thus, developers can focus their QA efforts on a small set of devices.

New developers can use data from other apps in the same app category to prioritize

their testing and other QA efforts if they do not already have reviews for their app.

We also find that some devices give statistically significantly worse star ratings than

others. Therefore, developers should identify particularly problematic devices, and

prioritize their QA efforts even further towards such devices. Finally we find that the

results from the free game category to generalized to paid game apps, and free apps

in the four other categories that were examined.

In conclusion, developers can adopt our method of analyzing Android reviews in

4.6. CONCLUSION 72

order to effectively alleviate the QA challenges brought forth by Android fragmenta-

tion.

4.6. CONCLUSION 73

2

4

6

Paid apps based on market share Paid apps based on review share of other apps

N
um

be
r

of
 d

ev
ic

es
 m

is
se

d

(a) Number of devices missed

0

10

20

30

40

Paid apps based on market share Paid apps based on review share of other apps

P
er

ce
nt

 o
f r

ev
ie

w
s

m
is

se
d

(b) Percent of review share missed

Figure 4.7: Number of devices and percent of review share missed if 10 devices with
the most reviews for all the remaining paid game apps are chosen

4.6. CONCLUSION 74

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●●

●●
●●

●●
●●

●●
● ●●

●●
●●

●●
●

0 5 10 15 20

0
20

40
60

80
10

0

Percent of devices

C
um

ul
at

iv
e

re
vi

ew
−

sh
ar

e

0 5 10 15 20

0
20

40
60

80
10

0

● Games ratings
Education ratings
Sports ratings
Business ratings
Entertainment ratings

Figure 4.8: Percent of Android devices used to give X% (X ranges from 0 - 80) of the
reviews of free apps in 5 categories

75

Chapter 5

Examining the Relationship between FindBugs

Warnings and End User Ratings: A Case Study

On 10,000 Android Apps

Summary – Past research has examined the relationship between static analysis

warnings and quality metrics. However, there is no evidence linking the static analy-

sis warnings directly to the user perception of software, as this relationship is difficult

to examine by research. In the app ecosystem, user perception is extremely important

to study as reviews of apps are highly correlated with downloads and hence revenues.

We use FindBugs, which is an automated static analysis tool for Java code, to com-

pare the results of running this tool on 10,000 free-to-download Android apps with the

reviews of the apps. We find that (1) a statistically greater density of static analysis

warnings occur in low-rated apps than high-rated apps; (2) specific categories of Find-

Bugs warnings such as the ‘Bad Practice’, ‘Performance’ and ‘Internationalization’

categories are found significantly more in low-rated apps. On examining the relation-

ship between these three categories of warnings and the complaints in reviews, we find

that apps with the highest densities of these warning categories, receive significantly

76

more corresponding complaints. These findings provide evidence that certain cate-

gories of warnings from FindBugs are closely related to user experience and hence

have a strong impact on the star rating of an app. Thus app developers can use static

analysis tools such as FindBugs to potentially identify the culprit bugs behind the is-

sues that users complain about, before they release the app.

Static analysis tools are used by developers to identify possible issues before a

software is released. These tools automatically examine source code and produce

warnings that help developers find possible issues. Previous research has confirmed

that static analysis tools can help identify warnings within the code, many of which

are actual software bugs [42–44]. Thus addressing the results of static analysis can

be used to improve the quality of a software. However, there are many categories of

static analysis warnings and it is not clear if some of these categories lead to software

bugs that impact the user’s perception of app quality.

User perception in the mobile ecosystem, represented as star ratings, are statisti-

cally significantly related to the downloads, and hence the revenue generated by an

app [8]. When mobile app users are dissatisfied with the quality of an app, they often

give a low-ratings to the app (1-star indicates bad quality while a 5-star indicates good

quality). In addition to these star ratings, app users can also leave review-comments

that are a text description about why the app was given a low-rating. If low-rated

reviews of apps are related to the warnings generated from static analysis tools, then

developers can use static analysis tools to potentially identify some of the bugs that

lead to low-ratings.

Thus in this case study, we study the static analysis tool “FindBugs” which is an

77

open source program that automatically identifies warnings in Java code for potential

bugs [73]. This tool can be used to analyze Jar files and strives to reduce the number

of false positives warnings [41]. In this case study, we examine the warnings from

running FindBugs on 10,000 free-to-download Android apps. By studying a large

corpus of apps, we want to empirically examine the relationship between the FindBugs

warnings in an app, and the star rating assigned to the app by the end user. We add

another dimension of evidence to the relationship, by comparing the complaints in the

reviews, and the warnings from FindBugs for a subset of apps. We want to understand

this relationship to determine if developers can trust the FindBugs warnings and use

them to fix crucial issues that affect users. More specifically, we seek to answer the

following research questions:

RQ1. Are there more FindBugs warnings in low-rated apps compared to

high-rated apps?

By comparing the densities of FindBugs warnings in low and high-rated apps,

we find that low-rated apps have higher warning densities than high-rated apps.

In addition, low-rated apps have a greater density of high-priority warnings.

RQ2. Which warnings occur more frequently in low-rated apps than high-

rated apps?

We find that warnings in the ‘Bad Practice’, ‘Internationalization’ and ‘Per-

formance’ categories have significantly higher densities in low-rated apps than

high-rated apps.

The results from these two research questions suggest that developers can benefit from

running static analysis tools (i.e., FindBugs) on their Android apps as this can help

5.1. BACKGROUND ON FINDBUGS 78

them identify software bugs in their app that could result in low-rating reviews, before

they release the app.

The remainder of this chapter is organized as follows: In Section 5.1, we provide the

necessary background on FindBugs. In Section 5.2, we provide an overview of our

approach. In Section 5.3, we present the motivation, approach and the findings for

each RQ. In Section 5.4, we discuss the potential threats to validity. We discuss the

lessons from this chapter and conclude this chapter in Section 5.5.

5.1 Background On FindBugs

We pick FindBugs as the static analysis tool for our case study. While there are other

prominent static analysis tools, we select FindBugs because it strives to reduce the

number of false positive warnings [41]. This, we feel is what makes a static analysis

tool useful since developers look for low-cost, high-effectiveness tools. Moreover, we

can run FindBugs on Jar files as we do not have access to the unpackaged source

code. While there are other static-analysis tools which also work well on Android

apps, we choose FindBugs since it focuses on reducing false positives and can analyze

Jar files. Moreover, FindBugs is widely used, and it focuses on the bugs that cause

functional problems [41,43].

Overall, FindBugs identifies warnings for over 400 possible bugs. These warnings

are grouped into the following 8 categories: ‘Bad Practice’, ‘Correctness’, ‘Inter-

nationalization’, ‘Malicious Code Vulnerability’, ‘Multi-threaded Correctness’, ‘Per-

formance’, ‘Security’ and ‘Dodgy Code’. Moreover, FindBugs also assigns different

priorities to each warning; the priority level of the warnings is dependent on how

5.2. STUDY DESIGN 79

Selecting
10,000
Android

Apps

Downloading
the apps, their

details and
reviews

Google
Play

Market
Decompiling
Apk to Jar

format

 List of
warnings for

each app

Running
FindBugs on

Jar file

Removing
warnings of

common
libraries

Reviews and
details for each
app

Jar
file

Compare FindBugs
warnings and user

complaints

Searching for
complaints in

reviews

APK for
each app

Common
complaints for

each app

Data Selection Data Collection De-compiling Android apps Running Findbugs Removing Warnings

Figure 5.1: Overview of our process

confident FindBugs is, in whether what it detects is in fact a bug.

In the next section, we provide a detailed overview of our study, and how we used

FindBugs to identify warnings in Android apps.

5.2 Study Design

In this case study, we examine the results of running FindBugs on 10,000 Android

apps. Figure 5.1 illustrates the different steps for this study in order, and we describe

them in the following subsections.

5.2.1 Data Selection

The data sample in our study are 10,000 free-to-download Android apps from the

Google Play market. These apps are randomly selected and cover a broad range

of star ratings and categories (we selected our app from a list of apps generated

by Dienst (et al.) [74]). Figure 5.2 illustrates the distribution of the star ratings

of these apps. The minimum star rating of our sample apps is 1.3 stars while the

maximum is 5 stars. The median star rating of these apps is 4.1 stars. Moreover, we

only select apps, which have a minimum of 30 individual star ratings. This ensures

that a few users don’t skew the star rating of these apps. The median of the number

5.2. STUDY DESIGN 80

0

300

600

900

1 2 3 4 5
Star ratings

N
um

be
r

of
 A

pp
s

Figure 5.2: Rating distribution of the 10,000 Android apps

of individual star ratings in our selected apps is 181. Our sample of apps is composed

of apps in all categories in the Google play market. Collectively, game apps account

for the highest number of apps, while weather apps account for the lowest.

5.2.2 Data Collection

To collect these apps, along with their details, we write a script using an open source

crawler called Google Play Crawler [75]. For each of these apps, we download the

APK (Android application package) file, their overall star rating, and their reviews.

We collect up to 500 of the newest reviews for each of the apps (Google Play limits

the total number of reviews that non-developers can see). Each review consists of the

star rating assigned to the app by the user, and the text of the review-comment that

the users enter.

Once we have all of the required data, we de-compile the apps into a format that

we can run FindBugs on.

5.2. STUDY DESIGN 81

5.2.3 De-compiling Android apps

After downloading the selected apps, we extract the Jar files from the APKs since this

is the format which FindBugs requires. We use an open source tool called Dex2Jar

to extract Jar files from APKs [76].

5.2.4 Running FindBugs on Android apps

We run FindBugs using recommended settings that detects high and medium priority

warnings, but ignores low priority warnings – these often include false positives and

are thus not a part of the recommended configuration [73]. In addition, we ignore all

style and naming convention warnings (since we are looking at the decompiled binary

of the original code), and the warnings from automatically generated files.

After running FindBugs on each of the apps, we extract the density of each warning

per app. Warning density in FindBugs is defined as warnings per thousand lines of

non-commenting source statements. In addition to this, we also identify the counts of

warnings in each of the 8 categories, and the occurrence of each warning along with

the name of the class where this warning occurred.

5.2.5 Removing warnings of common libraries

Android apps, like all software, are built with numerous external libraries. Since we

want to examine the relationship of reviews and warnings within each app, we cannot

have interference in our analysis because of common libraries (and warnings for these

libraries). For example, attributing the warnings of the Android.support library (a

set of code that provide backward-compatibility and are found across many Android

apps) adds unnecessary noise to the data.

5.2. STUDY DESIGN 82

0

100

200

300

400

500

0 1000 2000 3000 4000
Class Signature ID

N
um

be
r

of
 a

pp
s

th
at

 c
on

ta
in

 C
la

ss
 S

ig
na

tu
re

Figure 5.3: Number of apps that contain the 4039 shared class signatures (we examine
all class signatures above the green line)

The first step in removing these libraries is identifying the ones that are found

across many apps. We identify the external libraries using the packaging information

and class names of the base classes. For example, the base class android.support.app.Fragment

lets us identify that this app uses the Android.support library.

We count the number of apps that each package is found in. Figure 5.3 illustrates

the 4039 shared packages and the number of apps they are in. This figure does

not show the number of apps for the top 10 most common packages as they skew

5.3. RESULTS 83

the graph – the max of which is com.google, included in 5,611 apps. As this figure

demonstrates, there are a few packages that are found in many of the apps. After the

first few hundred popular classes, the frequency quickly declines.

For this study, we manually examine 766 packages that are shared in 10 or more

apps and the libraries that they are a part of. We examine these to make sure

that they are actually a library and not a commonly used package name (for exam-

ple, com.myapp.ButtonFragment). For each of these potential libraries, we examined

public code bases e.g., Github, Ohloh that match their signature ID. After examining

hundreds of potential libraries, we end up flagging a total of 329 libraries and ignore

the warnings from the classes of these libraries in our analysis.

5.3 Results

In this section, we discuss the motivation, approach and findings for both research

questions.

RQ1) Are there more FindBugs warnings in low-rated apps compared to

high-rated apps?

Motivation: Our hypothesis is that apps with low-ratings have more FindBugs warn-

ings. If this is proven, then this will be the first evidence for a direct link between

FindBugs warnings and star ratings. Developers could then use the warnings from

FindBugs to gauge the quality of their app, and find potentially critical bugs that

could lead to low-ratings (before they even deploy the app). We discuss our approach

for comparing the warnings of high and low-rated apps next.

5.3. RESULTS 84

High−rated apps

Low−rated apps

0 1 2 3 4 5

App Ratings

Figure 5.4: Comparing the star ratings of 2,500 high and low-rated apps

Approach: To answer this RQ, we want to check if densities of FindBugs warnings

are different between high and low-rated apps. To do this, we first sort the 10,000

apps by their ratings. We identify the 25%(2,500) apps with the best star ratings as

high-rated apps, and 25% with the worst star ratings as low-rated apps. The box plot

in Figure 5.4 illustrates the star ratings of high and low-rated apps. The high-rated

apps range from a star rating of 4.3 to 5 stars, while the low-rated apps range from

1.3 to 3.7 stars. We perform our analysis on warning densities instead of raw warning

numbers to control for the size of the apps.

To compare the densities of FindBugs warnings the high and low-rated apps, we

perform a one-tailed Mann-Whitney U-test with α < 0.05 [77]. In the next section,

we present the results of this analysis.

5.3. RESULTS 85

Findings: We find that low-rated apps, when compared to high-rated apps,

tend to have statistically significantly higher warning densities (p-value of

<0.001). Moreover, we find that both high and medium priority warnings are sta-

tistically higher in low-rated apps. Note that FindBugs is more confident that high

priority warnings will lead to a real bug.

The median of the total warning densities for low-rated apps is 2.4, while high-

rated apps have a median density of 1.9. However, both high and low-rated apps do

have some outliers (out of 2,500 apps in each set). Among the low-rated apps, there

is an app which has a high warning density of 76; this is an e-book app which has a

star rating of 3.6 and has complaints in its reviews about crashing and text display

issues.

The results from this RQ show that when FindBugs analyzes apps it reports a

higher density of warnings for low-rated apps. This finding provides evidence for a

link between star ratings and the density of FindBugs warnings. Thus, there is a

value in developers using static analysis before they release an app. They should

consider more QA tasks for an app with high warning densities.

Discussion: The results from RQ1 suggest that developers should be wary of a large

density of FindBugs warning in their apps. We now want to identify the specific

warning density at which developers should start paying additional attention. To do

this, we first sort the 10,000 apps by their total warning densities. Then, we divide

the apps into two sets based on their warning densities. Initially, we divide the two

sets with an arbitrary value of X = 2 warning density. The first set consists of all

app with a warning density of less than 2, while the second set contains all of the

5.3. RESULTS 86

apps with a warning density of 2 or higher. We compare the star ratings of the two

sets with the Mann-Whitney U-test. We keep decreasing the value of X in steps of

0.05, until the p-value is >0.05.

We find that 0.74 is the warning density at which the star ratings of the two

sets start to statistically significantly differ. Apps with a warning density of 0.74 or

higher have a statistically significantly lower rating. This suggests that 0.74 or higher

is the warning density that the developers should be careful about. At this point,

developers should consider investing additional resources in QA.

We find that low-rated apps have a statistically significant higher density of warnings
than high-rated apps. In addition, we find that low-rated apps also have higher density
of warnings for medium and high-priority warnings.

RQ2) Which warnings occur more frequently in low-rated apps than high-

rated apps?

Motivation: One of the common criticisms of static analysis tools is that they often

produce numerous false positives. This means that even if developers incorporate

static analysis tools into their workflow, they might end up wasting their time solving

warnings that don’t have an impact on their software.

While FindBugs explicitly focuses on reducing false positives as much as possible,

it is not perfect either. Some of the warnings it finds within apps could be benign

as well. Therefore we want to identify the warnings that are most related to the

lowest-rated apps. This will help developers prioritize the warnings found in their

app, which could be the culprit behind the issues that users complaint about.

Approach: The approach for this RQ builds on our work from RQ1. In this case,

we identify the specific type of warning by its ID, thus counting each individual type

5.3. RESULTS 87

Table 5.1: Categories of FindBugs warnings that have a statistically significantly
higher density of warnings in low rated apps compared to high rated apps.

FindBugs Warning Category MWU test p-value Median Warning Density
High-Rated Apps Low-Rated Apps

Bad Practice 0.011 0.21 0.24

Internationalization 1.57e-11 0.11 0.18

Performance 4.03e-05 0.39 0.48

of warning. Several types of warnings are aggregated to a category of warning as

specified by FindBugs (i.e., Performance). Therefore, we count the warnings based

on their categories. Following this step, we turn the raw counts into densities. The

densities for each of the different categories of warnings, are determined by adding

the density of every warnings that they are composed of.

Once we have the densities for each category, and type of warning, for the high and

low-rated apps (same as RQ1), we compare them using a one-tailed Mann-Whitney

U-test. In the next subsection, we present the warnings that were statistically differ-

ent.

Findings: We find that three categories (out of eight categories) of warn-

ings occur statistically significantly more in low-rated apps, than high-

rated apps. As shown in Table 5.1, Bad Practice warnings, Internationalization

warnings, and Performance warnings, have a statistically higher warning density in

the low-rated apps as compared to the high-rated apps. Bad Practice warnings are

violations of essential coding practices (e.g., equals problems, dropped exceptions,

misuse of finalize). Internationalization warnings are warnings where developers mis-

use character encodings. Performance warnings are for code that is slow. We also

present the median density values for these three categories among the high- and

5.3. RESULTS 88

low-rated apps.

These findings imply that developers should prioritize warnings in these three cat-

egories over others as they tend to be found more in low-rated apps and could lead

to low ratings.

Discussion: After identifing the three categories of FindBugs warnings that occur

signficantly more in low-rated apps, we now examine if users explicitly mention the

issues related to these warnings in the reviews of apps. To do so, we compare the com-

plaints in the reviews of the apps that have the highest densities of these warnings,

with the apps that have the lowest densities. To focus on the complaints we only an-

alyze the reviews-comments which have a rating of 3 stars or less [78]. We filter away

the apps that have less than 10 review-comments (so that a few review-comments

will not skew the overall complaints) [79]. We are left with a total of 4,708 apps.

From these 4,708 apps, we identify the top 25% apps (1,177) which have the highest

and the lowest reported densities for the warnings in Bad Practice, Performance and

Internationalization categories. Thus, we have the 1,177 apps with the highest Bad

Practice warning density, and 1,177 apps with the lowest Bad Practice warning den-

sity. Similarly we have subsets of apps for the Performance and Internationalization

categories as well.

To analyze the review-comments, we first identify the keywords that we should

look for. Judging by the nature of these three categories, and our prior experience

with manually categorizing reviews of mobile apps in Chapter 3 [58], we select the

keywords shown in Table 5.2 for our analysis. We count the number of review-

comments per app that has a keyword related to a warning category. For example,

5.3. RESULTS 89

we count the number of review-comments per app that has the keywords slow, hang,

lags, slug and attribute it to ‘Performance’ complaints from users. This list also

includes stemmed versions of each of these words (e.g., lags, lagging, lagged). We

only count one occurrence of these keywords per review, so if both ‘slow’ and ‘hangs’

are mentioned in a review, we only count this as one occurrence of a Performance

complaint. We do this since we only care if a review-comment contains a particular

type of complaint.

5
.3

.
R

E
S
U

L
T

S
9
0

Table 5.2: Keywords used to identify user complaints in review-comments associated with a particular warning
category and the results of the analysis in the discussion subsection.

FindBugs Warning Category Keywords MWU Test p-value Percentage of Review-
Comments with the Corre-
sponding Complaint (Mean
%)
Low density apps High density apps

Bad Practice Bug, Buggy, Issue 4.02e-09 5.6 6.7
Problem, Broke

Internationalization Country, Language 0.0002261 3.5 3.8
Word, International
Internationalization
UTF, Encoding

Performance Slow, Hang 0.0004456 3.9 6.0
Lag, Slug

5.3. RESULTS 91

Thus we get the frequency of review-comments with complaints corresponding

to a particular warning category, along with the total number of review-comments

for the app (i.e., total-review-comments: 500, performance-complaint-count: 50).

Following this step we turn the raw count into the percentage values (i.e., total-

review-comments: 500, performance-complaint-percentage: 10). We calculate these

performance-complaint-percentage for each of the 1,177 apps with the highest per-

formance warning densities, and the 1,177 apps with the lowest performance warn-

ing densities. Then we compare the performance-complaint-percentage values across

these 2 subsets of apps using the one-tailed Mann-Whitney U (MWU) test, to see if

users complain about performance in apps that have a higher density of performance

warnings. We repeat this process for the other two categories of warnings as well.

We find that apps with the highest densities of warning for a category has a

statistically significantly higher rate of the corresponding complaints. We present the

p-values of the MWU test and the mean percentage of review-comments in an app

that has complaints pertaining to a particular category of warning (i.e., warnings in

the Bad Practice, Performance and Internationalization categories) in Table 5.2.

An example of such an app is Media Player (trial) which has a Performance

warning density of 6.4. A quick examination of the reviews for this app reveals

numerous comments mentioning performance issues and crashes such as “Takes an

age to search SD card, then when you try to play a video it just says Buffering until

you get bored and close it. Rubbish.”

Many of these internationalization warnings are found in apps where the user is

complaining about the encoding, or being forced to use a specific language. Thus,

we are able to establish that warnings identified with FindBugs can directly manifest

5.4. THREATS TO VALIDITY 92

in the user’s review-comments as complaints about the apps, and thus impact the

ratings of the apps.

We find that three categories of warnings have a statistically higher density in low-rated
apps than high-rated apps: Bad Practice, Internationalization and Performance. This
suggests that developers should prioritize their QA efforts on addressing these warnings,
as their resultant bugs could have a detrimental affect on the rating of their app.

5.4 Threats to validity

In this section we discuss the perceived threats to our work and how we address them.

5.4.1 Construct Validity:

In this study, we did not analyze the code of the apps in their original form. We ran

FindBugs on the de-compiled versions of the 10,000 apps (some of which could be

obfuscated). While this may have affected the results, we are limited to this approach,

since we do not have access to the source code. For the APK files that we do have,

we use Dex2Jar that is also used in other studies to de-compile APK files [26].

When analyzing the warnings found in the Android apps, we removed the warnings

from third party libraries. It could be the case that the warnings in these libraries

maybe even more problematic than the warnings in the apps. However, we feel that

removing these libraries is a better approach since it is shared across many apps.

Assigning the warning attributes of the third party libraries to the apps themselves

also adds a low reliability of measures threat which could lead us to invalid conclusions.

It could also be the case that the set of common libraries in low-rated apps is

different than high-rated apps, and that we only removed one of these sets of libraries

5.4. THREATS TO VALIDITY 93

from our analysis. To mitigate this threat, we did verify that the relationship between

FindBugs warnings and star ratings holds even when all libraries are included.

5.4.2 Internal Validity:

The specific tools that we used for de-compiling the apps and identifying the warnings

are not perfect. Hence, their usage may affect our results. However, we used standard

tools for reverse engineering Android apps. We are also restricted to this approach

because of the large scope of the study. We also used the recommended setting of

FindBugs to analyze the Jar files.

In the discussion of RQ2, we identified the mention of different complaints based

on the usage of some keywords in reviews. It could be the case that that there were

additional words used to describe these complaints. However, manually analyzing

thousands of reviews is outside the scope of this study. The keywords that we did

pick, are based on our experience with manually analyzing complaints of apps [58].

By focusing on the reviews which gave a star rating of 3 or less, we made sure that

we focus on the complaints.

5.4.3 External Validity:

It could be the case that our findings don’t generalize to all free-to-download Android

apps. However we feel that studying 10,000 apps is a considerable sample. To mitigate

the threat of generalization, we also maximize the coverage of our apps by studying

apps that cover all of the categories of apps. In addition our 10,000 apps cover a

5.5. CONCLUSION AND LESSONS 94

range of star ratings that is similar to all apps in the Google play market [80].

5.5 Conclusion and Lessons

One of the main criticisms of static analysis tools are the number of false positive

warnings. These warnings can direct developers towards fixing issues that have no

impact on the quality of their software. In this chapter, we address some of these

concerns for developers by studying the relationship between the star ratings of apps

with the warnings generated by running FindBugs on their code. We find that that

there are certain types of FindBugs warnings that are closely related to lower star

ratings in Android apps.

For developers, this chapter highlights the utility, and importance of running

FindBugs on Android apps. While static analysis tools does not replace the process

of manually testing the apps on different devices, they complement manual testing

and offer a low-cost way to help developers identify warnings that could cause issues

that lead to low-ratings. The most important thing that developers can take away is

that there are three categories of warnings that appear significantly more in low-rated

apps. This means that during usage of FindBugs, these warnings lead to some bugs

that have a degrading affect on the quality of the app (hence resulting in low-ratings).

For app developers this means that they should not neglect running FindBugs (or

other static analysis tools) as it is a low-cost method of finding the solutions to some

of the user complaints. If the overall warning density for their app is too high, then

they should look at the categories of bugs that seem to have a high warning density,

and address those warnings before they release the app.

For researchers this chapter provides a direct link between static analysis warnings

5.5. CONCLUSION AND LESSONS 95

and software quality (expressed as star ratings). In the future, we plan to examine

other static analysis tools and how they could help developers improve the quality of

their apps.

96

Chapter 6

Summary and Conclusions

In the mobile ecosystem, the success of an app is often determined by the reviews that

it receives from users. This has led to an intense level of competition for developers.

Developers have to get good reviews in order to stand out from other apps. This

pressures developers to always improve the quality of their apps. While developers

can improve their app quality by traditional means, they can also exploit the reviews

in the mobile ecosystem and examine the user perception as a means of feedback.

However, there hasn’t been much research which examined these reviews from the

perspective of developers. Therefore, in this thesis we examine the reviews of Android

and iOS apps to validate the following research statement:

The mobile ecosystem provides centralized and publicly available user feedback in the
form of reviews. There is a great emphasis on these reviews and high-rated apps receive
significantly more downloads than low-rated apps. Now that researchers have access to
these reviews, they can perform new large-scale studies to help developers improve the
quality of their apps, and better prioritize their QA efforts.

6.1. SUMMARY 97

6.1 Summary

In Chapter 3 we examine the reviews of iOS apps to identify the different types of

complaints that developers can find in them. In Chapter 4 we analyze the device data

in the reviews of Android apps to study how Android app developers can better deal

with Android fragmentation. Finally in Chapter 5 we compare the star rating and

review data of Android apps with their static analysis warnings. We describe each of

these chapters in further detail below:

What Do Mobile App Users Complain About?

Chapter 3 presents an empirical study on the reviews of 20 iOS apps. By studying

the low-rating reviews of these apps, we found 12 types of user complaints. We

found that functional errors, feature requests and app crashes are the most frequent

complaints. On the other hand, we found that complaints about privacy and ethical

issues, and hidden app costs have the most negative impact on the star rating of an

app. Moreover, we found that users attributed their complaint to a recent update of

the app in 11% of the reviews.

From Chapter 3, we conclude that reviews can contain a wealth of information

that can help developers improve the quality of their apps. They can use the reviews

of their apps to frequently identify existing issues or potential new features. More-

over, reviews can help developers identify the otherwise unknown issues (i.e., privacy

or ethical issues) which have the worst impact on an app’s star ratings. Overall,

developers can use the information from reviews to better prioritize their limited QA

resources. In the next chapter, we study how Android developers can further optimize

their QA resources.

Prioritizing The Devices To Test Your App On: A Case Study Of Android

6.1. SUMMARY 98

Game Apps

In Chapter 4 we present a case study where we analyzed the device information

present within the reviews of Android apps to better understand of Android develop-

ers can deal with device fragmentation. Since there are hundreds of Android devices

in the market, each of which could have their own device-specific problems, Android

developers must carefully test their Android apps on numerous devices. We found

that while each app is rated from numerous devices (38 to 132 unique devices for

game apps), most of the reviews (80%) originate from a small subset of devices (on

average, 33%). We also found that some of these devices tend to give worse star

ratings than others. Moreover, we found that new developers can use the review data

from similar apps to identify the devices which they should focus on first.

From Chapter 4 we conclude that the device information from reviews can help

developers better prioritize their QA resources. Developers can focus on the devices

with the most reviews, and the ones with negative reviews, since these devices have

the greatest impact on star ratings. Studying these reviews can help both the owners

of the apps, and new developers who are getting started. In the next chapter, we

study how the review data compares with the warnings from a static analysis tool.

Examining the Relationship between FindBugs Warnings and End User

Ratings: A Case Study On 10,000 Android Apps

In Chapter 5 we present a study which examined the relationship between static

analysis warnings from FindBugs and the user’s perception. We find that a low-

rated apps have a statistically significantly greater density of FindBugs warnings than

high-rating apps. We also found that FindBugs warnings categories ‘Bad Practice’,

‘Performance’ and ‘Internationalization’ are found significantly more in low-rated

6.2. LIMITATIONS AND FUTURE WORK 99

apps. Finally, by comparing the warnings of the previous 3 categories of warnings

with the complaints in the apps, we found that some correspondence does exist.

From Chapter 5 we conclude that some FindBugs warnings negatively impact

the user experience and hence have a strong impact on the star rating of an app.

Developers can use static analysis tools to potentially identify culprit bugs behind

the issues that users complain about, before they release the app.

6.2 Limitations and Future Work

The limitations specific to each of Chapter 3, 4 and 5 are presented in their respec-

tive Threats to Validity section. Below, we discuss the common limitations of these

chapters and the future direction for our this research.

• Since we rely on reviews as our main data source, the validity of the findings in

this thesis are limited to the quality of the reviews. Some of the reviews could

be inauthentic or contain false information. In the worst case scenario, some

of these reviews could have been fake reviews by spammers which artificially

increased or reduced the star rating of an app. To mitigate the effects of these

potential false reviews, we used a large number of apps or reviews whenever

possible.

• Another limitation of our study, in terms of its implications for mobile apps, is

that it is limited to iOS and Android apps. Moreover, our set of reviews may

not generalize to all the reviews in the market. Future research can expand on

this thesis by considering more apps and comparing our findings across other

mobile platforms. For our work concerning the different complaint types, future

work can study whether other complaints have the same complaints.

6.3. CONCLUSIONS 100

We studied low-rated reviews to identify the most frequent and impactful com-

plaints. Future research can more platforms differ in terms of complaints and user

expectations. Moreover, future research should also examine the reasons why users

give high-rated reviews to apps. The evolution of these complaint types will also help

developers better anticipate possible issues across the life time of their apps.

For our work dealing with the device info in Android apps, future work can inves-

tigate the problems reported from each device, and why certain Android devices have

certain kinds of problems, thereby enabling developers to identify the problems. Fu-

ture work can also examine if developers can minimize the test device subset by only

picking one device from a family of devices; a family of devices may share common

characteristics and it may be redundant to test each one of them.

Our examination of static analysis focused on FindBugs. Future research can

examine other static analysis tools and how they could help developers improve the

quality of their apps. This approach can also be applied to the code of apps in

other platforms (e.g., iOS, or Windows Phone) and their respective programming

language (e.g., Objective C, C#).

6.3 Conclusions

As the mobile ecosystem continues its growth and impact on different aspects of our

daily lives, the quality of mobile is becoming increasingly important. Reviews of mo-

bile apps provide a direct access to the user’s perspective of an app, thus studying

them can help developers better understand the needs of their users. These reviews

contain information relevant to many stakeholders including developers, project man-

agers and content creators. These stakeholders can work together to better prioritize

6.3. CONCLUSIONS 101

their QA efforts and improve the quality of mobile apps. Future research can build on

our findings to help these stakeholders succeed in the ever-evolving mobile ecosystem.

BIBLIOGRAPHY 102

Bibliography

[1] “Android captured 79% share of global smart-

phone shipments in 2013,” April 2014. [Online].

Available: http://blogs.strategyanalytics.com/WSS/post/2014/01/29/

Android-Captured-79-Share-of-Global-Smartphone-Shipments-in-2013.aspx

[2] “Us smartphone market share q2 2013,” April 2014. [Online]. Available:

http://bgr.com/2013/08/06/us-smartphone-market-share-q2-2013-nielsen/

[3] “Apple press info: App store sales top $10 billion in 2013,” Jan-

uary 2014. [Online]. Available: http://www.apple.com/pr/library/2014/01/

07App-Store-Sales-Top-10-Billion-in-2013.html

[4] Google, “Android apps on Google Play,” April 2014. [Online]. Available:

https://play.google.com/store/apps/

[5] “Apple itunes everything you need to be entertained,” April 2014. [Online].

Available: http://www.apple.com/itunes/

[6] S. M. Mudambi and D. Schuff, “what makes a helpful online review? A study of

customer reviews on Amazon.com,” MIS Quarterly, vol. 34, no. 1, pp. 185–200,

2010.

http://blogs.strategyanalytics.com/WSS/post/2014/01/29/Android-Captured-79-Share-of-Global-Smartphone-Shipments-in-2013.aspx
http://blogs.strategyanalytics.com/WSS/post/2014/01/29/Android-Captured-79-Share-of-Global-Smartphone-Shipments-in-2013.aspx
http://bgr.com/2013/08/06/us-smartphone-market-share-q2-2013-nielsen/
http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
http://www.apple.com/pr/library/2014/01/07App-Store-Sales-Top-10-Billion-in-2013.html
https://play.google.com/store/apps/
http://www.apple.com/itunes/

BIBLIOGRAPHY 103

[7] H.-W. Kim, H. L. Lee, and J. E. Son, “An exploratory study on the determinants

of smartphone app purchase,” in Proceedings of the 11th International DSI and

the 16th APDSI Joint Meeting, Taipei, Taiwan, July 2011.

[8] M. Harman, Y. Jia, and Y. Zhang, “App store mining and analysis: Msr for

app stores,” in Proceedings of the 9th Working Conference on Mining Software

Repositories (MSR ’12), Zurich, Switzerland, 2-3 June 2012.

[9] L. Goasduff and C. Pettey, “Gartner says worldwide smartphone sales soared in

fourth quarter of 2011 with 47 per cent growth,” Gartner, Inc, vol. 15, 2012.

[10] “The smartphone reinvented around you — windows phone,” April 2014.

[Online]. Available: http://www.windowsphone.com/

[11] “Blackberry smartphones - apps,” April 2014. [Online]. Available: http:

//www.blackberry.com

[12] Louis Columbus, “Roundup of mobile apps and app store forecasts, 2013,”

June 2013. [Online]. Available: http://www.forbes.com/sites/louiscolumbus/

2013/06/09/roundup-of-mobile-apps-app-store-forecasts-2013/

[13] “Amazon appstore for Android,” April 2014. [Online]. Available: http:

//www.amazon.com/mobile-apps/b?node=2350149011

[14] “Samsung apps,” April 2014. [Online]. Available: http://apps.samsung.com/

mars/main/getMain.as?COUNTRY CODE=CAN

[15] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia, “Understanding

Android fragmentation with topic analysis of vendor-specific bugs,” in Reverse

http://www.windowsphone.com/
http://www.blackberry.com
http://www.blackberry.com
http://www.forbes.com/sites/louiscolumbus/2013/06/09/roundup-of-mobile-apps-app-store-forecasts-2013/
http://www.forbes.com/sites/louiscolumbus/2013/06/09/roundup-of-mobile-apps-app-store-forecasts-2013/
http://www.amazon.com/mobile-apps/b?node=2350149011
http://www.amazon.com/mobile-apps/b?node=2350149011
http://apps.samsung.com/mars/main/getMain.as?COUNTRY_CODE=CAN
http://apps.samsung.com/mars/main/getMain.as?COUNTRY_CODE=CAN

BIBLIOGRAPHY 104

Engineering (WCRE), 2012 19th Working Conference on. IEEE, 2012, pp.

83–92.

[16] H. Ham and Y. Park, “Mobile application compatibility test system design for

Android fragmentation,” Software Engineering, Business Continuity, and Edu-

cation, pp. 314–320, 2011.

[17] R. Vasa, L. Hoon, K. Mouzakis, and A. Noguchi, “A preliminary analysis of

mobile app user reviews,” in Proceedings of the 24th Australian Computer-Human

Interaction Conference. ACM, 2012, pp. 241–244.

[18] L. Hoon, R. Vasa, J.-G. Schneider, and K. Mouzakis, “A preliminary analysis

of vocabulary in mobile app user reviews,” in Proceedings of the 24th Australian

Computer-Human Interaction Conference. ACM, 2012, pp. 245–248.

[19] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical study,”

in Requirements Engineering Conference (RE), 2013 21st IEEE International,

July 2013, pp. 125–134.

[20] L. V. Galvis Carreño and K. Winbladh, “Analysis of user comments: An ap-

proach for software requirements evolution,” in Proceedings of the 2013 Interna-

tional Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 582–591.

[21] C. Iacob and R. Harrison, “Retrieving and analyzing mobile apps feature requests

from online reviews,” in Mining Software Repositories (MSR), 2013 10th IEEE

Working Conference on, May 2013, pp. 41–44.

BIBLIOGRAPHY 105

[22] F. Thung, S. Wang, D. Lo, and L. Jiang, “An empirical study of bugs in ma-

chine learning systems,” in Proceedings of the 23rd International Symposium on

Software Reliability Engineering (ISSRE). IEEE, 2012, pp. 271–280.

[23] Y. Tian, P. Achananuparp, I. N. Lubis, D. Lo, and E.-P. Lim, “What does

software engineering community microblog about?” in Proceedings of the 9th

IEEE Working Conference on Mining Software Repositories (MSR). IEEE,

2012, pp. 247–250.

[24] “Workshop on mobile software engineering.” [Online]. Available: www.

mobileseworkshop.org

[25] M. D. Syer, B. Adams, Y. Zou, and A. E. Hassan, “Exploring the development

of micro-apps: A case study on the blackberry and android platforms,” Int’l

Working Conference on Source Code Analysis and Manipulation, pp. 55–64, 2011.

[26] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan, “Understanding reuse

in the android market,” in Proceedings of the 20th IEEE International Conference

on Program Comprehension (ICPC), June 2012.

[27] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl, Diagnosing mobile applications

in the wild. ACM Press, 2010, pp. 1–6.

[28] A. K. Jha, “A risk catalog for mobile applications by,” Interface, no. February,

2007.

[29] H. Kim, B. Choi, and W. E. Wong, “Performance testing of mobile applications

at the unit test level,” in IEEE Int’l Conf. on Secure Software Integration and

Rel. Improvement, ser. SSIRI ’09, 2009, pp. 171–180.

www.mobileseworkshop.org
www.mobileseworkshop.org

BIBLIOGRAPHY 106

[30] R. Stevens, J. Ganz, V. Filkov, P. Devanbu, and H. Chen, “Asking for (and

about) permissions used by android apps,” in Proceedings of the Tenth Inter-

national Workshop on Mining Software Repositories. IEEE Press, 2013, pp.

31–40.

[31] F. Khomh, B. Chan, Y. Zou, A. Sinha, and D. Dietz, “Predicting post-release

defects using pre-release field testing results,” in Software Maintenance (ICSM),

2011 27th IEEE International Conference on. IEEE, 2011, pp. 253–262.

[32] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto,

and D. Poshyvanyk, “Api change and fault proneness: a threat to the success of

android apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering. ACM, 2013, pp. 477–487.

[33] C. Hu and I. Neamtiu, “Automating gui testing for android applications,” in

Proceedings of the 6th International Workshop on Automation of Software Test.

ACM, 2011, pp. 77–83.

[34] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation system

for android apps,” in Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, ser. ESEC/FSE 2013, 2013, pp. 224–234.

[35] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic testing

of smartphone apps,” in Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering. ACM, 2012, p. 59.

[36] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.

Memon, “Using gui ripping for automated testing of android applications,”

BIBLIOGRAPHY 107

in Proceedings of the 27th IEEE/ACM International Conference on Automated

Software Engineering. ACM, 2012, pp. 258–261.

[37] Z. Jamrozik, Gross, “Droidmate: Fully automatic testing of android apps,”

September 2013. [Online]. Available: http://www.droidmate.org/

[38] “Using hardware devices — android developers.” [Online]. Available: http:

//developer.android.com/tools/device.html

[39] K.-M. Cutler, “How do top android developers qa test their

apps?” June 2012. [Online]. Available: http://techcrunch.com/2012/06/

02/android-qa-testing-quality-assurance/

[40] “Appthwack — test your android, ios, and web apps on real devices.” [Online].

Available: https://appthwack.com/

[41] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” ACM Sigplan Notices,

vol. 39, no. 12, pp. 92–106, 2004.

[42] B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and K. Stephens,

“Improving your software using static analysis to find bugs,” in Companion to

the 21st ACM SIGPLAN symposium on Object-oriented programming systems,

languages, and applications. ACM, 2006, pp. 673–674.

[43] N. Ayewah and W. Pugh, “The google findbugs fixit,” in Proceedings of the 19th

international symposium on Software testing and analysis. ACM, 2010, pp.

241–252.

[44] A. Vetro, M. Morisio, and M. Torchiano, “An empirical validation of findbugs

issues related to defects,” 2011.

http://www.droidmate.org/
http://developer.android.com/tools/device.html
http://developer.android.com/tools/device.html
http://techcrunch.com/2012/06/02/android-qa-testing-quality-assurance/
http://techcrunch.com/2012/06/02/android-qa-testing-quality-assurance/
https://appthwack.com/

BIBLIOGRAPHY 108

[45] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Evaluating

static analysis defect warnings on production software,” in Proceedings of the 7th

ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering. ACM, 2007, pp. 1–8.

[46] C. Guo, J. Zhang, J. Yan, Z. Zhang, and Y. Zhang, “Characterizing and detect-

ing resource leaks in android applications,” in Automated Software Engineering

(ASE), 2013 IEEE/ACM 28th International Conference on. IEEE, 2013, pp.

389–398.

[47] É. Payet and F. Spoto, “Static analysis of android programs,” Information and

Software Technology, vol. 54, no. 11, pp. 1192–1201, 2012.

[48] P. Krishnan, S. Hafner, and A. Zeiser, “Applying security assurance techniques

to a mobile phone application: An initial approach,” in Software Testing, Ver-

ification and Validation Workshops (ICSTW), 2011 IEEE Fourth International

Conference on. IEEE, 2011, pp. 545–552.

[49] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl, “Diagnosing mobile applications

in the wild,” in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics

in Networks. ACM, 2010, p. 22.

[50] N. Hu, P. A. Pavlou, and J. Zhang, “Can online reviews reveal a product’s true

quality?: empirical findings and analytical modeling of online word-of-mouth

communication,” in Proceedings of the 7th ACM conference on Electronic com-

merce, ser. EC ’06, 2006, pp. 324–330.

BIBLIOGRAPHY 109

[51] J. A. Chevalier and D. Mayzlin, “The effect of word of mouth on sales: Online

book reviews,” Journal of marketing research, vol. 43, no. 3, pp. 345–354, 2006.

[52] appComments, “Read user reviews online and by rss,” June 2012. [Online].

Available: http://appcomments.com/

[53] “Sample size calculator - creative research systems,” February 2014. [Online].

Available: http://www.surveysystem.com/sscalc.htm

[54] C. B. Seaman, F. Shull, M. Regardie, D. Elbert, R. L. Feldmann, Y. Guo, and

S. Godfrey, “Defect categorization: making use of a decade of widely varying his-

torical data,” in Proceedings of the Second ACM-IEEE international symposium

on Empirical software engineering and measurement. ACM, 2008, pp. 149–157.

[55] C. B. Seaman, “Qualitative methods in empirical studies of software engineer-

ing,” Software Engineering, IEEE Transactions on, vol. 25, no. 4, pp. 557–572,

1999.

[56] selenium, “selenium: Web browser automation,” Jun. 2012. [Online]. Available:

http://seleniumhq.org/

[57] “Distimo - app analytics, conversion tracking, app download and revenue data.”

[Online]. Available: http://www.distimo.com/

[58] H. Khalid, “On identifying user complaints of ios apps,” in Proceedings of the

2013 International Conference on Software Engineering. IEEE Press, 2013, pp.

1474–1476.

http://appcomments.com/
http://www.surveysystem.com/sscalc.htm
http://seleniumhq.org/
http://www.distimo.com/

BIBLIOGRAPHY 110

[59] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile app

users complain about? a study on free ios apps,” in Accepted to be published in

IEEE Software. IEEE Press, 2014.

[60] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges in mobile

app development,” in Empirical Software Engineering and Measurement, 2013

ACM/IEEE International Symposium on. IEEE, 2013, pp. 15–24.

[61] “Appcelerator / IDC - Q4 2013 mobile trends report,” November

2013. [Online]. Available: http://www.appcelerator.com.s3.amazonaws.com/

pdf/q4-2013-devsurvey.pdf

[62] H. Bodden, “Android’s fragmentation problem,” November 2012. [Online].

Available: http://greyheller.com/Blog/androids-fragmentation-problem

[63] “Appthwack — pricing for mobile device testing.” [Online]. Available:

https://appthwack.com/pricing

[64] D. Irish, The game producer’s handbook. CT-Press, 2005.

[65] J. Clark, S. DeRose et al., “Xml path language v-1.0,” 1999.

[66] S. L. Lim and P. Bentley, “Investigating app store ranking algorithms using

a simulation of mobile app ecosystems,” in Evolutionary Computation (CEC),

2013 IEEE Congress on, June 2013, pp. 2672–2679.

[67] “Sentistrength - sentiment strength detection,” July 2013. [Online]. Available:

http://sentistrength.wlv.ac.uk/

http://www.appcelerator.com.s3.amazonaws.com/pdf/q4-2013-devsurvey.pdf
http://www.appcelerator.com.s3.amazonaws.com/pdf/q4-2013-devsurvey.pdf
http://greyheller.com/Blog/androids-fragmentation-problem
https://appthwack.com/pricing
http://sentistrength.wlv.ac.uk/

BIBLIOGRAPHY 111

[68] “Android phone market share - appbrain,” March 2014. [Online]. Available:

http://www.appbrain.com/stats/top-android-phones

[69] “Using the device availability dialog,” February 2013. [Online]. Available:

https://support.google.com/googleplay/android-developer/answer/1286017

[70] A. J. Scott and M. Knott, “A Cluster Analysis Method for Grouping Means in

the Analysis of Variance,” Biometrics, vol. 30, no. 3, pp. 507–512, 1974.

[71] “Motorola droid x2: Even raw horsepower can’t save this phone,” Septem-

ber 2013. [Online]. Available: http://www.androidpolice.com/2011/05/28/

review-motorola-droid-x2-even-raw-horsepower-cant-save-this-phone-from-mediocrity/

[72] “Tap tap revenge 4 keeps closing,” September 2013. [Online]. Avail-

able: https://getsatisfaction.com/tapulous/topics/tap tap revenge 4 keeps

closing after i complete a song

[73] “Findbugs - find bugs in java programs,” November 2013. [Online]. Available:

http://findbugs.sourceforge.net

[74] S. Dienst and T. Berger, “Static analysis of app dependencies in android byte-

code,” Technical Note, 2012.

[75] “Akdeniz-google-play-crawler — github,” November 2013. [Online]. Available:

https://github.com/Akdeniz/google-play-crawler

[76] “Dex2jar: Tools to work with android .dex and java .class files,” November

2013. [Online]. Available: https://code.google.com/p/dex2jar/

http://www.appbrain.com/stats/top-android-phones
https://support.google.com/googleplay/android-developer/answer/1286017
http://www.androidpolice.com/2011/05/28/review-motorola-droid-x2-even-raw-horsepower-cant-save-this-phone-from-mediocrity/
http://www.androidpolice.com/2011/05/28/review-motorola-droid-x2-even-raw-horsepower-cant-save-this-phone-from-mediocrity/
https://getsatisfaction.com/tapulous/topics/tap_tap_revenge_4 _keeps_closing_after_i_complete_a_song
https://getsatisfaction.com/tapulous/topics/tap_tap_revenge_4 _keeps_closing_after_i_complete_a_song
http://findbugs.sourceforge.net
https://github.com/Akdeniz/google-play-crawler
https://code.google.com/p/dex2jar/

BIBLIOGRAPHY 112

[77] H. Mann and D. Whitney, “On a test of whether one of two random variables

is stochastically larger than the other,” The annals of mathematical statistics,

1947.

[78] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan, “Prioritizing the devices

to test your app on: A case study of Android game apps,” in Proceedings of the

22nd ACM SIGSOFT International Symposium on the Foundations of Software

Engineering. ACM, 2014.

[79] I. J. Mojica Ruiz, “Large-scale empirical studies of mobile apps,” Master’s The-

sis, School of Computing, Faculty of Arts and Science, Queen’s University, 2013.

[80] “Ratings on the android market - appbrain,” November 2013. [Online].

Available: http://www.appbrain.com/stats/android-app-rating

http://www.appbrain.com/stats/android-app-rating

	Abstract
	Co-Authorship
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Overview
	Contributions
	Organization of Thesis

	Background and Related Work
	Mobile ecosystem
	iOS
	Android

	Reviews of Mobile Apps
	Studies on reviews
	Manual Analysis of text data

	App Quality
	Studies on the Quality of Mobile apps
	Studies related to testing Android apps

	Static Analysis

	What Do Mobile App Users Complain About?
	Study Design
	Selecting the Apps
	Collecting the Reviews
	Selecting the Reviews
	Tagging the Reviews

	Results
	Generalizing the Results
	Comparison with Android apps

	Discussion
	Complaints related to app updates
	Lessons for Practitioners

	Threats to Validity
	External Validity:
	Internal Validity:

	Conclusion

	Prioritizing The Devices To Test Your App On: A Case Study Of Android Game Apps
	Study Design
	Data Selection
	Data Collection
	Preliminary Analysis

	Results
	Generalizing the Results
	Comparison with Paid Game Apps
	Analysis of Apps in Other Categories

	Lessons for Developers
	Threats to validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion

	Examining the Relationship between FindBugs Warnings and End User Ratings: A Case Study On 10,000 Android Apps
	Background On FindBugs
	Study Design
	Data Selection
	Data Collection
	De-compiling Android apps
	Running FindBugs on Android apps
	Removing warnings of common libraries

	Results
	Threats to validity
	Construct Validity:
	Internal Validity:
	External Validity:

	Conclusion and Lessons

	Summary and Conclusions
	Summary
	Limitations and Future Work
	Conclusions

	Bibliography

